期刊文献+

NtC3H基因对烟草类黄酮及绿原酸合成的影响 被引量:9

The Influence of Nt C3H on the Synthesis of Flavonoids and Chlorogenic Acid in Tobacco
下载PDF
导出
摘要 为验证Nt C3H是否参与烟草中类黄酮和绿原酸等次生代谢物质的合成,构建了p CXSN::Nt C3H超量表达载体,利用农杆菌介导的叶盘转化法将Nt C3H基因转入野生型烟草三生烟,并通过HPLC检测转基因烟草中绿原酸以及芦丁、山奈酚芸香苷等类黄酮的含量变化。结果显示,与野生型三生烟草相比,转基因烟草叶片中绿原酸及芦丁的含量最高,分别提高了3.6倍和6.1倍,山奈酚芸香苷含量提高了24.6倍。研究结果证实了Nt C3H基因参与烟草中类黄酮和绿原酸等次生代谢物质的合成。 To test whether NtC3H participates in the biosynthesis of flavonoids, and chlorogenic acid (CGA) in tobacco and increases the contents of these secondary metabolites, we constructed the over-expression vector pCXSN::NtC3H and introduced it into Nicotiana tabacum var. samsun via Agrobacterium-mediated transformation. The concentrations of the different secondary metabolites including CGA, rutin, and kaempferol rutinoside in leaves of wild-type and transgenic lines were determined by HPLC. Compared to wild-type samsun tobacco, in transgenic tobacco the concentrations of CGA were increased 3.6-fold, rutin and kaempferol rutinoside were increased 6.1- and 24.6-fold respectively. These results suggested that NtC3H positively regulated the synthesis of flavonoids and CGA in tobacco.
出处 《中国烟草科学》 CSCD 北大核心 2016年第1期8-13,共6页 Chinese Tobacco Science
基金 国家高技术研究发展计划"富含类黄酮及咖啡酰奎尼酸番茄品种的培育"(863 2010AA10Z103)
关键词 烟草 NtC3H基因 绿原酸 类黄酮 tobacco Nt C3H chlorogenic acid flavonoids
  • 相关文献

参考文献20

  • 1Liu X, Deng Z, Gao S, et al. A new gene coding for pcoumarate3-hydroxylase from Ginkgo biloba[J]. Russ JPlant Physiol, 2008, 55(1): 82-92.
  • 2Franke R, Hemm M R, Denault J W, et al. Changes insecondary metabolism and deposition of an unusuallignin in the ref8 mutant of Arabidopsis[J]. Plant J, 2002,30(1): 47-59.
  • 3Abdulrazzak N, Pollet B, Ehlting J, et al. A coumaroylester-3-hydroxylase insertion mutant reveals theexistence of nonredundant meta-hydroxylationpathways and essential roles for phenolic precursors incell expansion and plant growth[J]. Plant Physiol, 2006,140(1): 30-48.
  • 4Ralph J, Akiyama T, Kim H, et al. Effects of coumarate3-hydroxylase down-regulation on lignin structure[J]. Jof Bio Chem, 2006, 281(13): 8843-8853.
  • 5Reddy M S, Chen F, Shadle G, et al. Targeted downregulationof cytochrome P450 enzymes for foragequality improvement in alfalfa (Medicago sativa L.)[J].Proc Natl Acad Sci USA, 2005, 102(46): 16573-16578.
  • 6Diaz Napal G N, Carpinella M C, Palacios S M.Antifeedant activity of ethanolic extract from Flourensiaoolepis and isolation of pinocembrin as its activeprinciple compound[J]. Bioresour Technol, 2009,100(14): 3669-3673.
  • 7Amil-Ruiz F, Blanco-Portales R, Mu-oz-Blanco J, et al.The strawberry plant defense mechanism: a molecularreview[J]. Plant Cell Physiol, 2011, 52(11): 1873-1903.
  • 8Izaguirre M M, Mazza C A, Svatos A, et al. Solarultraviolet-B radiation and insect herbivory triggerpartially overlapping phenolic responses in Nicotianaattenuata and Nicotiana longiflora[J]. Ann Bot, 2007,99(1): 103-109.
  • 9Hannum S M. Potential impact of strawberries on humanhealth: a review of the science[J]. Crit Rev Food SciNutr, 2004, 44(1): 1-17.
  • 10Soobrattee M A, Bahorun T, Aruoma O I.Chemopreventive actions of polyphenolic compoundsin cancer[J]. Biofactors, 2006, 27(1-4): 19-35.

二级参考文献137

共引文献90

同被引文献143

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部