期刊文献+

基于稀疏约束的流形正则化概念分解算法 被引量:1

Sparse Constrained Manifold Regularized Concept Factorization Algorithm
下载PDF
导出
摘要 流形学习算法在构造图模型时假设观测数据来自一个光滑的流形采样,但实际高维数据中由于各种因素经常存在噪声或异常值.针对概念分解算法无法有效地处理数据中存在的噪声问题,同时未考虑数据间的几何结构信息问题,提出一种基于稀疏约束的流形正则化概念分解算法.该算法通过l2,1范数对目标函数进行稀疏约束,得到具有鉴别能力的特征向量;同时构建拉普拉斯图正则项获得数据的流形结构信息,提高算法的鉴别能力.最后对文中算法的目标函数进行求解并证明了其收敛性;在PIE人脸库、AT&T人脸库、Reuters文本库和TDT2文本库上的实验结果表明,该算法提高了聚类的准确率和归一化互信息. Manifold learning algorithms assumed that the observed data are sampled from a smooth manifold, while the actual high-dimensional data often exist noise or outliers due to various factors. The concept factorization (CF) algorithm cannot deal with the noise effectively and capture the intrinsic geometrical structure simultaneously. In this paper, a novel algorithm called sparse constrained manifold regularized concept factorization (SMCF) is proposed, which using i2>\ norm incorporated in the objective function of concept factorization to obtain the feature vectors with more discriminating ability, and extract the intrinsic manifold structure of samples by constructing graph Laplacian regularizer to improve the discrimination power. The objective function of SMCF is solved by the iterative multiplicative updating algorithm and its convergence is also proved in this paper. The experimental results on PIE, AT&T, Reuters and TDT2 datasets have shown that the proposed approach achieves better clustering performance in terms of accuracy and normalized mutual information.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第3期381-394,共14页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61272220 61101197) 中国博士后科学基金(2014M551599) 江苏省社会安全图像与视频理解重点实验室基金(30920130122006) 江苏省普通高校研究生科研创新计划项目(KYLX_0383)
关键词 非负矩阵分解 概念分解 l2.1范数 流形学习 图拉普拉斯 聚类 non-negative matrix factorization concept factorization l2,1 norm manifold learning graph Laplacian cluster
  • 相关文献

参考文献27

  • 1Zhang L J, Chen C, Bu J J, et al. D iscrim inative codeword selectionfo r image representation[C] //Proceedings o f the InternationalConference on M ultim edia. New York: A C M Press,2010: 173-182.
  • 2L i X L , Pang Y W, Yuan Y. Ll-norm -based 2DPCA[J]. IEEETransactions on Systems, Man, and Cybernetics, 2010, 40(4):1170-1175.
  • 3Roweis S T, Saul L K . Nonlinear dim ensionality reduction bylocally linear embedding[J]. Science, 2000,290(5500): 2323-2326.
  • 4Lee D D , Seung H S. Learning the parts o f objects bynon-negative m atrix factorization[J]. Nature, 1999, 401(6755):788-791.
  • 5X u W, Gong Y H. Document clustering by concept factorization[C] //Proceedings o f the 27th Aim ual International AC MSIGIR Conference on Research and Development in Inform ationRetrieval. New York: AC M Press, 2004: 202-209.
  • 6Cai D, He X F, Han J W. Locally consistent concept factorizationfo r document clustering[J]. IEEE Transactions on K now ledgeand Data Engineering, 2011,23(6): 902-913.
  • 7L i P, Chen C, Bu J J. Clustering analysis using m anifold kernelconcept factorization[J]. Neurocomputing, 2012, 87: 120-131.
  • 8Ye J, Jin Z. Dual-graph regularized concept factorization fo rclustering[J]. Neurocomputing, 2014,138: 120-130.
  • 9Ke Q F, Kanade T. Robust L i nonn factorization in the presenceo f outliers and missing data by alternative convex programmingfC]//Proceedings o f the IEEE Computer SocietyConference on Computer Vision and Pattern Recognition. LosAlam itos: IEEE Corrqiuter Society Press, 2005,1: 739-746.
  • 10Shen B , L iu B D, Wang Q F, et al Robust nonnegative m atrixfactorization via L I norm regularization by m ultiplicative updatingrules[C] //Proceedings o f the International Conferenceon Image Processing. Los Alam itos: IEEE Computer SocietyPress, 2014: 5282-5286.

二级参考文献33

  • 1苗启广,王宝树.图像融合的非负矩阵分解算法[J].计算机辅助设计与图形学学报,2005,17(9):2029-2032. 被引量:22
  • 2Aggarwal J K. Multisensor Fusion for Computer Vision[M]. Berlin Heidellberg: Springer-Verlag, 1993.
  • 3Varshney P K. Multisensor data fusion[J]. Electronics & Communication Engineering Journal, 1997, 9(6): 245~253.
  • 4Linas J, Hall D L. An introduction to multi-sensor data fusion[A]. In: Proceedings of IEEE International Symposium on Circuits and Systems, Part 6, Monterey, 1998. 537~540.
  • 5Novak M, Mammone R. Use of non-negative matrix factorization for language model adaptation in a lecture transcription task[A]. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake, 2001. 541~544.
  • 6Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(21): 788~791.
  • 7Feng Tao, Li Stan Z. Shum Heung-Yeung, et al. Local non-negative matrix factorization as a visual representation[A]. In: Proceedings of the 2nd International Conference on Development and Learning, Cambridge, 2002. 1~6.
  • 8Lee D D, Seung H S. Algorithms for Non-negative Matrix Factorization[A]. In: Advances in Neural Information Processing Systems, Denver, 2000. 556~562.
  • 9Guillamet David, Vitria Jordi. Color Histogram Classification Using NMF[OL]. http:∥citeseer.nj.nec.com/546491.html, 2003.
  • 10Zhao W,Chellappa R,Phillips P J. Face recognition:a literature survey[J].ACM Computing Surveys (CSUR),2003,(4):399-458.

共引文献24

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部