期刊文献+

融合低层和高层特征图表示的图像显著性检测算法 被引量:4

Image Saliency Detection via Graph Representation with Fusing Low-level and High-level Features
下载PDF
导出
摘要 为了有效地利用不同层次特征的互补性,提高鲁棒性,提出一种融合低层和高层特征的图表示的图像显著性算法.首先以超像素为结点构图,通过高层特征和底层特征差异定义该图的点和边的权重;然后根据该图模型构造不对称转移概率矩阵,并利用Markov随机游走算法进行求解,得到初始显著性图;最后结合中心先验及改进的边界先验得到最终的图像显著性结果.在4个公共数据集上与10种方法进行比较与分析,验证了该算法的有效性. To employ complementary benefits of different level features effectively and improve the robust-ness, we propose a graph representation based image saliency detection method, which fuses low-level and high-level features. We take superpixels as graph nodes to construct the graph model, in which the weights of the nodes and edges are defined by high-level features and the difference of low-level features, respec-tively. Then, a symmetric transition probability matrix is constructed based on the proposed graph represen-tation model, and the Markov random walk algorithm is utilized to optimize this model and obtain the initial saliency map. To improve the robustness of the proposed method, the center prior and the improved bound-ary prior are integrated into our model. Extensive experiments on four publicly available datasets with ten approaches demonstrate the effectiveness of the proposed approach.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第3期420-426,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2014AA015104) 国家自然科学基金(61472002) 安徽省高等学校省级自然科学研究项目(KJ2014A015) 安徽省自然科学基金(1508085QF127)
关键词 图像显著性 特征融合 图表示模型 不对称转移 image saliency features fusion graph representation model asymmetric transition
  • 相关文献

参考文献24

  • 1赵三元,李凤霞,沈建冰,王清云.基于红黑小波的图像显著性检测[J].计算机辅助设计与图形学学报,2014,26(10):1789-1793. 被引量:5
  • 2Luo P, Tian Y L , Wang X Q ef al. Switchable deep network fo rpedestrian detection[C] //Proceedings o f the IEEE ComputerSociety Conference on Computer V ision and Pattern Recognition Workshops. Los Alam ltos: IEEE Computer Society Press,2014: 49-56.
  • 3Chen T, Cheng M M , Tan P, et ah Sketch2Photo: internet imagemontage[J]. AC M Transactions on Graphics, 2009,28(5): A rticle No. 124.
  • 4Itti L . Autom atic foveation fo r video compression using aneurobiological model o f visual attention[J]. IEEE Transactionson Image Processing, 2004,13(10): 1304-1318.
  • 5郭迎春,袁浩杰,吴鹏.基于Local特征和Regional特征的图像显著性检测[J].自动化学报,2013,39(8):1214-1224. 被引量:29
  • 6Itti L, Koch C, Niebur E. A model o f saliency-based visual attentionfo r rapid scene analysis[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1998,20(11): 1254-1259.
  • 7Cheng M , M itra N J, Huang X , et al. Global contrast based salien t region detection[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2015,37(3): 569-582.
  • 8Shen X H, W u Y. A unified approach to salient object detectionvia low rank m atrix recovery[C] //Proceedings o f the IEEEConference on Computer \^sio n and Pattern Recognition. LosAlam itos: IEEE Computer Society Press, 2012: 853-860.
  • 9L iu T, Yuan Z J, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2011, 33(2): 353-367.
  • 10Yang J M , Yang M H. Top-down visual saliency via jo in t CRFand dictionary leam ing[C] //Proceedings o f the IEEE Conferenceon Computer Vision and Pattern Recognition. Los A lam itos:IEEE Computer Society Press, 2012: 2296-2303.

二级参考文献35

  • 1Wang W,Liu L,Hu C B,et al.Airport detection in SARimage based on perceptual organization[C]//Proceedings ofInternational Workshop on Multi-Platform/Multi-sensorRemote Sensing and Mapping.Los Alamitos:IEEE ComputerSociety Press,2011:1-5.
  • 2Duda R O,Hart P E.Use of the Hough transformation todetect lines and curves in pictures[J].Communications of theACM,1972,15(1):11-15.
  • 3Qu Y Y,Li C H,Zheng N N.Airport detection base onsupport vector machine from a single image[C]//Proceedingsof 5th International Conference on Information,Communications and Signal Processing.Los Alamitos:IEEEComputer Society Press,2005:546-549.
  • 4Pi Y M,Fan L H,Yang X B.Airport detection and runwayrecognition in SAR images[C]//Proceedings of IEEEInternational Geoscience and Remote Sensing Symposium.LosAlamitos:IEEE Computer Society Press,2003,6:4007-4009.
  • 5Tao C,Tan Y H,Cai H J,et al.Airport detection from largeIKONOS images using clustered SIFT keypoints and regioninformation[J].IEEE Geoscience and Remote SensingLetters,2011,8(1):128-132.
  • 6Liu D H,He L H,Carin L.Airport detection in large aerialoptical imagery[C]//Proceedings of IEEE InternationalConference on Acoustics,Speech,and Signal Processing.LosAlamitos:IEEE Computer Society Press,2004,5:761-764.
  • 7Desimone R,Duncan J.Neural mechanisms of selective visualattention[J].Annual Reviews in Neuroscience,1995,18:193-222.
  • 8Itti L,Koch C,Niebur E,et al.A model of saliency-basedvisual attention for rapid scene analysis[J].IEEETransactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 9Walther D,Koch C.Modeling attention to salientproto-objects[J].Neural Networks,2006,19(9):1395-1407.
  • 10Hou X D,Zhang L Q.Saliency detection:a spectral residualapproach[C]//Proceedings of IEEE Conference on ComputerVision and Pattern Recognition.Los Alamitos:IEEEComputer Society Press,2007:1-8.

共引文献50

同被引文献9

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部