期刊文献+

分形的正交频谱分析 被引量:5

Spectrum Analysis of Fractals Based on Orthogonal Decomposition
下载PDF
导出
摘要 为了对几何分形对象进行频域表达,利用具有自相似结构的正交函数系——V-系统对分形做正交分解,提出一种对分形对象的频谱分析方法.该方法利用V-系统对分形对象进行数学表达,得到分形的V-谱;在已知分形的V-谱中引入调节参数,并给出一类通过调节参数的设置,获得分形变体或生成新分形的方法.实验结果表明,分形的V-谱不仅可以展现分形对象的整体轮廓与逐级逼近的复杂细节,还便于对不同分形间的差异进行量化;通过V-谱的调节可以产生意想不到的几何分形.通过较多图例诠释文中方法与效果,最后给出河流变迁的例子,表明分形对象的频谱分析方法具有良好的应用前景. To represent fractals in frequency domain, this paper proposes a method of fractal frequency analysis based on an orthogonal function system, the V-system, with self-similar structure. Firstly, expand the fractal object into a V-series and the V-spectra are obtained accordingly. Then introduce several adjust-able parameters to the V-spectra of the known fractal. Finally, present a method of generating the fractal va-riants or new fractal curves by changing the values of the adjustable parameters. The experimental results show that the V-spectra of a fractal can not only display the contour of the fractal and its complex details in layers, but also quantify the difference between two different fractals. Many amazing geometric fractals can be produced by adjusting the V-spectra. Plenty of fractal graphs are provided in this paper to interpret the proposed method and show its effect. In addition, fractal curves describing changes in rivers are provided in the end of the paper to illustrate the application prospect of the fractal orthogonal representation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第3期488-497,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展规划项目(2011CB302400) 国家自然科学基金(61272026 61571046) 澳门科技发展基金(097/2013/A3).
关键词 自相似 分形 正交分解 V-系统 多分辨分析 self-similarity fractal orthogonal decomposition V-system multi-resolution analysis
  • 相关文献

参考文献22

  • 1M andelbrot B B. The fractal geometry o f nature[M]. New York:W. H. Freeman & Co Ltd, 1983.
  • 2Peitgen H 0 , R ichter P H. The beauty o f fractals[M]. Heidelberg:Springer, 1986.
  • 3Barnsley M F. Fractal everywhere[M]. Boston: Academic Press,1988.
  • 4Falconer K . Fractal geometry: mathematical foundations andapplications [M]. 2nd ed. New York: W iley, 2013.
  • 5Siddiqi S S, Idrees U , Rehan K . Generation o f fractal curvesand surfaces using ternary 4-point interpolatory subdivisionscheme[J]. Applied Mathematics and Computation, 2014, 246:210-220.
  • 6Siddiqui S S, Siddiqui S, Ahmad N . Fractal generation usingternary 5-point interpolatory subdivision scheme[J]. AppliedMathematics and Computation, 2014,234: 402-411.
  • 7Femandez-Martinez M , Sanchez-Granero M A . Fractal dimension fo r fractal stmctures[J]. Topology and Its Applications,2014,163:93-111.
  • 8Viswanathan P, Chand A K B, Navascus M A . Fractal perturbationpreserving fundamental shapes: Bounds on the scalefactors[J]. Journal o f Mathematical Analysis and Applications,2014,419(2): 804-817.
  • 9Ashish, Rani M , Chugh R. Julia sets and M andelbrot sets inNoor orbit[J]. Applied Mathematics and Computation, 2014,228:615-631.
  • 10X iu C B, Wang T T, Tian M , et al. Short-term prediction methodo f w ind speed series based on fractal interpolation[J].Chaos Solitons & Fractals, 2014,68: 89-97.

二级参考文献58

  • 1蔡占川 孙伟 齐东旭.基于正交完备U-系统的图形分类与识别方法.软件学报,2006,17(1):21-27.
  • 2Song, R. X., Ma, H., Wang, T. J., et al.: The complete orthogonal V-system and its application. Commun. Pure Appl. Anal., 6(3), 853-871 (2007).
  • 3Alpert, B.: A class of bases in L^2 for the sparse representation of integral operators. SIAM J. Math. Anal., 24, 246-262 (1993).
  • 4Micchelli, C. A., Xu, Y. X.: Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal., 1, 391-401 (1994).
  • 5Strela, V.: Multiwavelets: Theory and Applications, PhD thesis, MIT, 1996.
  • 6Goodman, T. N. T., Lee, S. L.: Wavelets of multiplicity r. Trans. Amer. Math. Soc., 338(2), 639-654 (1994).
  • 7Geronimo, J., Hardin, D., Massopust, P.: Fractal function and wavelet expansions based on several scaling function. J. Approx. Theory, 78, 373-401 (1994).
  • 8Geronimo, J., Hardin, D., Massopust, P.: Construction of orthogonal wavelets using fractal interpolution functions. SIAM J. Math. Anal., 27, 1158-1192 (1996).
  • 9Li, S.: Multivariate refinement equations and convergence of cascade algorithms in Lp (0 < p < 1) spaces. Acta Mathematica Sinica, English Series, 19(1), 97-t06 (2003).
  • 10Feng, Y. Y., Qi, D. X.: A sequence of piecewise orthogonal polynomials. SIAM J. Math. Anal., 15(4), 834-844 (1984).

共引文献24

同被引文献54

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部