期刊文献+

漂浮式风-浪能混合利用系统运动模型数值分析 被引量:1

Numerical modeling of floating wind-wave energy hybrid utilization system
下载PDF
导出
摘要 风浪能混合发电技术具备可提高平台利用效率、增加并稳定发电量和减小发电成本的特点。本文以STC型漂浮式风浪能混合利用系统为例,建立并求解风浪能混合利用系统的非线性联合运动方程组,分析风浪能混合利用系统的波浪载荷、风载荷。计算风浪能混合利用系统的运动响应,并将数值计算的结果与已有的试验数据进行比较,验证了风浪能混合利用系统数学运动模型的准确性和适用性。应用该数学运动模型分析PTO(power takeoff)参数BPTO对波能装置发电性能的影响。在一定范围内,增加BPTO使俘获宽度比曲线带宽变小,且俘获宽度峰值对应入射波频率向低频区转移。 Combining wind turbine system and wave energy converter (WEC) is a new trend which will be cost ef- fective and lead to an overall improvement on power performance. In this paper, the Spar-Torus Combination (STC) type floating wind-wave energy hybrid utilization system is studied. A MATLAB program was built to analyze the wave load and wind load of the hybrid system. The motion response of the hybrid system was calculated and the result was compared with the experimental data that had been gotten. The accuracy and adaptability of the numerical model for the hybrid system were validated. Then this numerical method was used to study the effect of WEC's power take-off system on its power performance. As the PTO coefficient increased, the peak frequency of capture width ratio curve decreased, and the corresponding incident wave frequency turned to low-frequency area.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第1期138-144,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(51379051)
关键词 浮式风机 波能浪装置 风浪能混合发电 数值模拟 联合运动方程 能量吸收装置 运动模型 floating wind turbine wave energy converter hybrid wind-wave energy system numerical simulation motion equation power take-off motion model
  • 相关文献

参考文献14

  • 1张亮,吴海涛,荆丰梅,崔琳.海上漂浮式风力机研究进展及发展趋势[J].海洋技术,2010,29(4):122-126. 被引量:34
  • 2SHIM S, KIM M H. Rotor-floater-tether coupled dynamic analysis of offshore floating wind turbines[C]//The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2008.
  • 3PEIFFER A, RODDIER D, AUBAULT A. Design of a point absorber inside the WindFloat structure[C]//ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2011:247-255.
  • 4AUBAULT A, ALVES M, SARMONTO A, et al. Modeling of an oscillating water column on the floating foundation WindFloat[C]//ASME 201130th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2011:235-246.
  • 5PEIFFER A, RODDIER D. Design of an oscillating wave surge converter on the windfloat structure[C]//4th International Conference on Ocean Energy. Dublin:ICOE2012. 2012.
  • 6MULIAWAN M J, KARIMIRAD M, MOAN T. Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter[J]. Renewable Energy, 2013, 50:47-57.
  • 7PEREZ-COLLAZO C, GREAVES D, IGLESIAS G. A review of combined wave and offshore wind energy[J]. Renewable and Sustainable Energy Reviews, 2015, 42:141-153.
  • 8MEI C C. The applied dynamics of ocean surface waves[M]. New York:World Scientific, 1989:285-290.
  • 9RAINEY R C T. Slender-body expressions for the wave load on offshore structures[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. The Royal Society, 1995, 450(1939):391-416.
  • 10MA Q W, PATEL M H. On the non-linear forces acting on a floating spar platform in ocean waves[J]. Applied Ocean Research, 2001, 23(1):29-40.

二级参考文献26

  • 1world Wind Energy Association.wofJd Wind Energy Report 2009[M].Istanbul,Turkey:WWEA Head Office,2010:9.
  • 2Heronemus W E.Pollution-Free Energy From Offshore Winds[C] //Proceedings of Annual Conference and Exposition Marine Technology Society.Washington D C:Marine Technology Society,1972.
  • 3Tong K C,Ouarton D C,Standing R.Float-a Floating Offshore Wind Turbine System in Wind Energy Conversion[C] //Proceeding of the BWEA Wind Energy Conference.York,England:1993:407-413.
  • 4Barltrop N.Multiple unit floating offshore wind farm(MUFOW)[J].Wind Engineering,1993,17(4):183-188.
  • 5Henderson A R,Bulder B,Huijsmans R,et al.Feasibility study of floating windfarms in shallow offshore sites[J].Wind Engineering,2003,27(5):405-418.
  • 6Manabe H,Uehiro T,Utiyama M,et al.Development of the floating structure for the Sailing-type Offshore Wind Farm[C].//Proceeding of the OCEANS 2008 MTS/IEEE Kobe Techno-Ocean.Kobe,Japan:IEEE,2008:1361-1364.
  • 7Buttertield S,Musial W,Jonkman J,et al.Engineering Challenges for Floating Offshore Wind Turbines[C].//Proceedings of the Offshore Wind Energy Conference.Copenhagen:COW,2005.
  • 8Suzuki H,Sato A.Load on turbine blade induced by motion of floating platform and design requirement for the platform[C].//Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering.San Diego,California,USA:ASME,2007:OMAE2007-29500.
  • 9Knauer A,Hanson T D,Skaare B.Offshore Wind Turbine Loads in Deep-water Environment[C].// Proceedings of the European Wind Energy Conference & Exhibition.Athens,Greece:EWEC,2006.
  • 10Bir G,Jonkman J.Aercelastic Instabilities of Large Offshore and Onshore Wind Turbines[J].Journal of PAysics:Conference Series,2007,75(1):12069.

共引文献39

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部