摘要
对函数迭代的研究是离散动力系统的主要内容之一.对于低次的迭代问题往往不会复杂,但当迭代的次数较高或迭代次数不断增加时,会出现意想不到的的情况.指数函数作为重要的基本初等函数之一,通过对它的迭代在迭代次数不断增加时出现的结果进行研究,获得了过定义域中每一点的轨道性质以及轨道在迭代次数趋向无穷大时的极限状态.
The study Of iteration of the function is one of the important issues in the discrete dynamical system. The iterative problem of low degree is not complex, but when the degree of iteration is higher, or iterative times increasingly grow,the unexpected things will happen. The exponential function is one of the important basic elementary functions, through the study of the iteration based on results obtained when iterative times increasingly grows iteration, the relevant properties of the orbit of every point in its domain and the limit of its orbit have been obtained.
出处
《湖北理工学院学报》
2016年第1期28-32,共5页
Journal of Hubei Polytechnic University
关键词
指数函数
迭代
不动点
2-周期点
轨道
exponential function
iteration
the fixed point
2 - periodic point
orbit