期刊文献+

基于压缩感知的认知雷达多目标跟踪方法 被引量:2

Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing
下载PDF
导出
摘要 该文提出了一种基于压缩感知的认知雷达跟踪方法,该方法将压缩感知理论引入到认知雷达跟踪的问题中。通过对回波信号的稀疏表示,完成稀疏变换矩阵和观测矩阵的设计,实现了降采样条件下量测信号的重构。在系统的接收端,考虑到传统的粒子滤波容易陷入局部最优,对粒子数目要求大等问题,采用了粒子群优化的粒子滤波来对目标状态进行实时估计。在系统的发射端,采用优化后验克拉美罗界(Posterior Cramer-Rao Bounds,PCRB)设计了雷达发射波形参数,降低了对目标跟踪精度的PCRB。仿真表明,相比于传统跟踪方法,该文所提跟踪方法不仅有效地减少了雷达的数据量,而且较大地提高了目标的跟踪性能。 A multiple targets cognitive radar tracking method based on Compressed Sensing(CS) is proposed.In this method,the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario.The echo signal is sparsely expressed.The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely,and subsequently,the restruction of measurement signal under the down-sampling condition is realized.On the receiving end,after considering that the problems that traditional particle filter suffers from degeneracy,and require a large number of particles,the particle swarm optimization particle filter is used to track the targets.On the transmitting end,the Posterior Cramer-Rao Bounds(PCRB) of the tracking accuracy is deduced,and the radar waveform parameters are further cognitively designed using PCRB.Simulation results show that the proposed method can not only reduce the data quantity,but also provide a better tracking performance compared with traditional method.
出处 《雷达学报(中英文)》 CSCD 2016年第1期90-98,共9页 Journal of Radars
基金 国家自然科学基金(61172169 61201369) 陕西省自然科学基础研究计划项目(2013JQ8008)~~
关键词 认知雷达 压缩感知 多目标跟踪 波形设计 粒子滤波 Cognitive radar Compressed Sensing(CS) Multiple target tracking Waveform design Particle Filter(PF)
  • 相关文献

参考文献15

  • 1黎湘,范梅梅.认知雷达及其关键技术研究进展[J].电子学报,2012,40(9):1863-1870. 被引量:77
  • 2Haykin S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
  • 3Haykin S, Zia A, Arasaratnam I, et al.. Cognitive tracking radar[C]. Proceedings of 2010 IEEE Radar Conference, Washington DC, 2010: 1467-1470.
  • 4Chavali P and Nehorai A. Cognitive radar for target tracking in multipath scenarios[C]. Proceedings of 2010 IEEE Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 110-114.
  • 5Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 6Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 7Candes E, Romberg J, and Tan T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 8Candes E. Compressive sampling[C]. Proceedings of the International Conference of Mathematicians, Madrid, Spain, 2006: 1433-1452.
  • 9Sira S P. Time-varying waveform selection and configuration for agile sensors in tracking applications[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, Pennsylvania, 2005: 880-884.
  • 10薛文虎,张社国,徐红华.用于目标跟踪的自适应广义调频波形设计算法[J].海军工程大学学报,2012,24(4):67-71. 被引量:2

二级参考文献156

  • 1赵知劲,郑仕链,孔宪正.认知无线电中频谱感知技术[J].现代雷达,2008,30(5):65-69. 被引量:8
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3卢建斌,胡卫东,郁文贤.多功能相控阵雷达实时任务调度研究[J].电子学报,2006,34(4):732-736. 被引量:57
  • 4R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 5Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 6Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 7E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 8E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 9Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 10G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.

共引文献883

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部