期刊文献+

完全图的交换齐次因子分解

Abelian Homogeneous Factorization of Complete Graphs
下载PDF
导出
摘要 通过对完全图交换齐次因子分解的研究,得到素数幂的顶点个数的完全图KPn(p为素数),有交换齐次因子分解,并且群M包含一个初等阿贝尔p群;对Kn(n非素数幂),得到其存在交换齐次因子分解的一个充分条件. In this paper, it is proposed that a prime power ofthe complete graph Ken (pis a prime)vertex number has abelian homogeneous factorization based on theinvestigation of abelian homogeneous factorization of complete graphs, and thegroupMcontains an elementaryAbelianp-group. In addition, for Kn ( non-Prime Power), a sufficient condition forthe existence of abelian homogeneous factorization is obtained.
出处 《吉林师范大学学报(自然科学版)》 2016年第1期46-48,51,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(61304146) 贵州省科技厅 安顺市人民政府 安顺学院三方联合科技基金项目(黔科合J字LKA[2012]21) 贵州省高校优秀科技创新人才支持计划项目(黔教合KY字[2014]255)
关键词 完全图 交换齐次因子分解 Singer子群 初等阿贝尔p群 complete graphs abelian homogeneous factorisation singer subgroup elementary abelian p-group
  • 相关文献

参考文献11

  • 1R. Guralnick, C. H. Li, C. E. Praeger, J. Saxl. On orbital partitions and exceptionality of primitive permutation groups [ J ]. Trans. Amer. Math. Soc 2004,356:4857 - 4872.
  • 2T. K. Lim. Edgeqransitive homogeneous faetorisations of complete graphs [ D ]. PH. D. Thesis,The University of Western Australia,2003.
  • 3L. Stringer. Homogeneous factorizations of complete digraphs [ J ]. M. Sc. Dissertation, The University of Western Australia,2004.
  • 4M. C. N. Cuaresma. Homogeneous factorisations of Johnson graphs[ D]. Ph. D. Thesis ,University of the Philippines,2004.
  • 5M. Giudici, C. H. Li, P. Potocnik, C. E. Praeger. Homogeneous fact0rizations of graphs and digraphs [ J ]. European J. Combin. 2006,27 : 11 - 37.
  • 6X. G. Fang, C. H. Li, J. Wang. On transitive 1-factorizations of arctransitive graphs [ J ]. J. Combin. Theory Ser. A. 2007,114:692 - 703.
  • 7M. Giudici ,C. H. Li ,P. Potocnik ,C. E. Preaeger,Homogeneous factorisation of complete muhipartite graphs[J]. Discrete Math,2007,307(3) :415 -431.
  • 8侴万禧,雷小磊.任意阶完全图K_V的2因子分解[J].吉林师范大学学报(自然科学版),2008,29(2):22-24. 被引量:1
  • 9C. E. Praeger, C. H. Li, L. Stringer. Common circulant homogeneous factorisations of the complete digraph [ J ]. Discrete Mathematics, 2009,309 (10) :3006 - 3012.
  • 10张晓辉,卢建岳,李根亮,武慧红,潘江敏.完全图的循环齐次分解[J].云南大学学报(自然科学版),2010,32(3):254-257. 被引量:5

二级参考文献28

  • 1侴万禧.2t名运动员的循环赛和对集的划分[J].安徽理工大学学报(自然科学版),2006,26(1):64-69. 被引量:11
  • 2侴万禧.边矩阵K′_(2n+1)的K+1-边着色与循环赛的安排[J].安徽建筑工业学院学报(自然科学版),2006,14(4):1-5. 被引量:4
  • 3LI C H,PRAEGER C E. On partitioning the orbitals of a transitive permutation group[ J]. Trans Amer Math Soc,2003,355: 637-653.
  • 4GIUDICI M, LI C H, POTOCNIK P, et al. Homogeneous factorizations of graphs and digraphs[J]. European J Combin,2006, 27 : 11-37.
  • 5GIUDICI M, LI C H, POTOCNIK P, et al. Homogeneous faetorisations of complete multipartite graphs [ J ]. Discrete Math, 2007,307:415-431.
  • 6LI C H. Finite edge -transitive Cayley graphs and rotary Cayley maps[ J]. Trans Amer Math Soe ,2006,358:4 605-4 635.
  • 7STRINGER L. Homogeneous factorisations of complete digraphs [ D ]. M Sc Dissertion:The University of Western Australia, 2004.
  • 8LIM K. Edge -transitive homogeneous factorisations of complete graphs[D].M Sc Dissertion:The University of Western Australia, 2003.
  • 9LI C H, PRAEGER C E. Self - complementary vertex - transitive graphs need not be Cayley graphs [ J ]. Bull London Math Soc, 2001,33(6) :653-661.
  • 10LI C H, PRAEGER C E, SRINGER L. Common circulant homogeneous factorisations of the complete digraphs [ J ]. Discrete Math, to appear.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部