期刊文献+

基于二维直方图的中智模糊聚类分割方法 被引量:1

A neutrosophic c-means clustering algorithm based on two-dimension histogram
下载PDF
导出
摘要 加入邻域像素均值,对中智模糊聚类分割算法加以改进,以提高其抗噪性能。将各像素与其邻域像素均值相结合,形成二元数组,统计其出现的频次,由此构造二维直方图。通过对此二维直方图进行中智模糊聚类,实现图像分割。对标准灰度图像添加椒盐噪声和高斯噪声,用以验证改进算法的性能。视觉效果及分割图像的峰值信噪比均显示,改进算法相比原中智模糊聚类分割法具有更好的抗噪能力和分割效果。 The neutrosophic c-means clustering algorithm is improved on its anti-noise performance by adding the neighbor pixels information. A two-element array is formed by combining the value of each pixel and the mean value of its neighboring pixels, and the frequency of its emergence is constructed. The image segmentation is realized by using the neutrosophic c-means clustering algorithm based on the two dimensional histogram. The performance of the improved algorithm is validated by standard image with added salt and pepper noise and Gauss noise. Both the visual effect and the peak signal to noise ratio of the segmented image show that the improved algorithm has better anti noise ability compared to the original one.
出处 《西安邮电大学学报》 2016年第1期54-58,共5页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金重点资助项目(61136002) 陕西省自然科学基金资助项目(2014JM8331 2014JQ5183 2014JM8307) 陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词 图像分割 模糊C-均值聚类 中智模糊聚类 二维直方图 image segmentation, fuzzy c-means clustering, neutrosophic c-means clustering, two-dimension histogram
  • 相关文献

参考文献15

  • 1BORA D J,GUPTA K A.A Comparative study Between Fuzzy Clustering Algorithm and Hard Clustering Algorithm[J].International Journal of Computer Trends and Technology,2014,2(10):108-113.
  • 2HAN L X,CHEN G H.A fuzzy clustering method of construction of ontology-based user profiles[J].Advances in Engineering Software,2009,7(40):535-540.
  • 3KANDWAL R,KUMAR A,BHARGAVA S.Review:Existing Image Segmentation Techniques[J].International Journal of Advanced Research in Computer Science and Software Engineering,2014,4(4):153-156.
  • 4SHIVHARE P,GUPTA V.Review of Image Segmentation Techniques Including Pre&Post Processing Operations[J].International Journal of Engineering and Advanced Technology,2015,4(3):153-157.
  • 5李琳,范九伦,赵凤.模糊C-均值聚类图像分割算法的一种改进[J].西安邮电大学学报,2014,19(5):56-60. 被引量:24
  • 6WANG Z M,SONG Q,SOH Y C,et al.An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation[J].Computer Vision and Image Understanding,2013,117(10):1412-1420.
  • 7AHMED M,YAMANY S,MOHAMED N,et al.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
  • 8CHEN S,ZHANG D.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Transactions on Systems Man and Cybernetics:Part B,2004,34(4):1907-1916.
  • 9CAI W,CHEN S,ZHANG D.Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation[J].Pattern Recognition,2007,40(3):825-838.
  • 10KRINIDIS S,CHATZIS V.A Robust Fuzzy local Information C-Means Clustering Algorithm[J].IEEE Transactions on Image Processing,2010,19(5):1328-1337.

二级参考文献11

  • 1刘健庄,1990年
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3Ahmed M N,Yamany S M,Mohamed N,et al.A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
  • 4Krinidis S,Chatzis V.A robust fuzzy local information c-means clustering algorithm[J].IEEE Transactions on Image Processing,2010,19(5):1328-1337.
  • 5Chen Songcan,Zhang Daoqiang.Robust image segmentation using FCM with spatial constraints based on new kernel-induce distance measure[J].IEEE Transactions on System,Man and Cybernetics.Part B:Cybernetics,2004,34(4):1907-1916.
  • 6Minh N D,Martin V.Wavelet-based texture retrieval using generalized Gaussian density and KullbackLeibler distance[J].IEEE Transactions on Image Processing,2002,11(2):146-158.
  • 7何俊,葛红,王玉峰.图像分割算法研究综述[J].计算机工程与科学,2009,31(12):58-61. 被引量:102
  • 8Feng Zhao (1) add_zf1119@hotmail.com Licheng Jiao (1) Hanqiang Liu (1).Fuzzy c-means clustering with non local spatial information for noisy image segmentation[J].Frontiers of Computer Science,2011,5(1):45-56. 被引量:33
  • 9李旭超,刘海宽,王飞,白春艳.图像分割中的模糊聚类方法[J].中国图象图形学报,2012,17(4):447-458. 被引量:66
  • 10任应军,范九伦.一种DWT与背景重构相结合的运动目标分割方法[J].计算机科学,2012,39(10):290-293. 被引量:2

共引文献86

同被引文献19

  • 1PHELLAN R, FALCAO A X, UDUPA J K. Medical image segmentation via atlases and fuzzy object models: improving efficacy through optimum object search and fewer models [J]. Medical physics, 2016, 43( 1 ) : 401-410.
  • 2KANDWAL R, KUMAR A, BHARGAVA S. Review: existing image segmentation techniques [J]. International journal of advanced research in computer science and soft- ware engineering ,2014,4 ( 4 ) : 153-156.
  • 3WANG C,KOMODAKIS N,ISHIKAWA H, et al. Inference and learning of graphical models : theory and applications in computer vision and image analysis [J]. Computer vision and image understanding, 2016 (143) : 52-53.
  • 4LUO Y,ZHAO L Y, ZHANG B, et al. Local line direction- al pattern for palmprint recognition [J]. Pattern recogni- tion,2016(50) : 26-44.
  • 5FAJARDO M, MCBRATNEY A, WHELAN B. Fuzzy clus- tering of Vis-NIR spectra for the objective recognition of soil morphological horizons in soil profiles [J]. Geoderma, 2016(263) : 244-253.
  • 6BAI C, DHAVALE D, SARKIS J. Complex investment decisions using rough set and fuzzy c-means: an example of investment in green supply chains[J]. European journal of operational research, 2016, 248 (2) : 507-521.
  • 7FENG C, ZHAO D, HUANG M. Image segmentation using CUDA accelerated non-local means denoising and bias cor- rection embedded fuzzy c-means (BCEFCM) [J]. Signal processing, 2016(122) : 164-189.
  • 8YANG M S, TIAN Y C. Bias-correction fuzzy clustering al- gorithms [J]. Information science,2015,318 ( 10 ) : 28-47.
  • 9AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy C-means algorithm for bias field testimation and segmentation of MRI data [J]. IEEE transactions on medical imaging,2002,21 ( 3 ) : 193-199.
  • 10CHEN S C, ZHANG D Q. Robust image segmentation using FCM with spatial based om new Kernel- induced distance measure [J]. IEEE transactions on systems, man, and cyber- netics, part b : cybernetic, 2004,34 ( 4 ) : 1907-1916.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部