摘要
加入邻域像素均值,对中智模糊聚类分割算法加以改进,以提高其抗噪性能。将各像素与其邻域像素均值相结合,形成二元数组,统计其出现的频次,由此构造二维直方图。通过对此二维直方图进行中智模糊聚类,实现图像分割。对标准灰度图像添加椒盐噪声和高斯噪声,用以验证改进算法的性能。视觉效果及分割图像的峰值信噪比均显示,改进算法相比原中智模糊聚类分割法具有更好的抗噪能力和分割效果。
The neutrosophic c-means clustering algorithm is improved on its anti-noise performance by adding the neighbor pixels information. A two-element array is formed by combining the value of each pixel and the mean value of its neighboring pixels, and the frequency of its emergence is constructed. The image segmentation is realized by using the neutrosophic c-means clustering algorithm based on the two dimensional histogram. The performance of the improved algorithm is validated by standard image with added salt and pepper noise and Gauss noise. Both the visual effect and the peak signal to noise ratio of the segmented image show that the improved algorithm has better anti noise ability compared to the original one.
出处
《西安邮电大学学报》
2016年第1期54-58,共5页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金重点资助项目(61136002)
陕西省自然科学基金资助项目(2014JM8331
2014JQ5183
2014JM8307)
陕西省教育厅科学研究计划资助项目(2015JK1654)
关键词
图像分割
模糊C-均值聚类
中智模糊聚类
二维直方图
image segmentation, fuzzy c-means clustering, neutrosophic c-means clustering, two-dimension histogram