期刊文献+

自适应最稀疏时频分析方法的分解能力研究 被引量:1

Research on the Decomposing Ability of the Adaptive and Sparsest Time-Frequency Analysis Method
下载PDF
导出
摘要 自适应最稀疏时频分析(adaptive and sparsest time-frequency analysis,ASTFA)方法将信号分解转化为最优化问题,在优化的过程中实现信号的自适应分解.为了研究ASTFA的分解能力,在定义分解能力评价指标(Evaluation Index of Decomposition Capacity,EIDC)的基础上,以双谐波分量合成信号模型来研究幅值比、频率比、初始相位差对ASTFA的影响.同时,将ASTFA方法与经验模态分解(Empirical Mode Decomposition,EMD)、局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)进行对比分析.研究结果表明,ASTFA方法的分解能力基本不受幅值比的影响,可分解的极限频率比较大,不受初始相位差的影响,该方法的分解能力具有明显的优越性. The signal decomposition is translated into optimization problem in the adaptive and sparsest time--frequency analysis (ASTFA) method, and the signal can be decomposed adaptively in the optimization. In order to research the ASTFA decomposition capability, based on the evaluation index of decomposition capacity (EIDC), this paper studied the effect of amplitude ratio, the frequency ratio and initial phase difference by using the decomposition model with the double harmonic component synthetic signal. And then, the ASTFA was compared with the Empirical Mode Decomposition (EMD) and Local Characteristic-scale Decomposition (LCD). The results show that the decomposition capacity of the ASTFA is not influenced by the amplitude ratio or the initial phase difference, and the decomposed ultimate frequency ratio is larger. The decomposition capacity of the ASTFA method has the obvious superiority.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期43-47,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(51375152)~~
关键词 自适应最稀疏时频分析 经验模态分解 局部特征尺度分解 分解能力 相位 adaptive and sparsest time-frequency analysis EMD LCD decomposing ability phase
  • 相关文献

参考文献10

二级参考文献39

  • 1徐冠雷,王孝通,徐晓刚,秦绪佳,朱涛.多分量到单分量可用EMD分解的条件及判据[J].自然科学进展,2006,16(10):1356-1360. 被引量:26
  • 2章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:75
  • 3COHEN L. Time-frequency distribution a review[J]. Proceedings of the IEEE,1989, 77(7): 941-981.
  • 4CLASSEN T, MECKLENBRAUKER W. The aliasing prob lem in discrete-time Wigner distribution[J]. IEEE Transac tions on Acoustics, Speech and Signal Processing, 1983, 31 (5): 1067- 1072.
  • 5MALLAT S. A theory for multi-resolution decomposition, the wavelet representation[J]. IEEE Trans P A M I, 1989, 11 (7) :674-689.
  • 6HUANG N E,SHEN Z,LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J]. Proceedings of the Royal Society A, 1998,454:903-995.
  • 7HUANG N E,SHEN Z, LONG S R. A new view of nonlinear water waves: the Hilbert speetrum[J]. Annu Rev Fluid Mech, 1999,31: 417-457.
  • 8JONATHAN S S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
  • 9MARK G F, IVAN O. Intrinsic time-scale decomposition: time-frequency energy analysis and real-time filtering of non- stationary signals [J]. Proceedings of the Royal Society A, 2007, 463: 321-342.
  • 10QI Ke-yu, HE Zheng-iia, ZI Yan-yang. Cosine window-based boundary processing method for EMD and its application in rubbing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007,21 (7):2750-2760.

共引文献115

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部