期刊文献+

拉格朗日多项式逻辑回归分类算法并行计算优化 被引量:4

Parallel Optimization of LORSAL Algorithm for Remote Sensing Image Classification Based on GPU
下载PDF
导出
摘要 针对拉格朗日多项式逻辑回归算法中逻辑回归参数计算复杂高、耗时长,直接制约其在大数据量遥感图像上应用的问题,提出了基于图形处理器GPU对算法进行数据级并行计算处理。算法首先利用已知的训练样本进行多元回归参数估算,然后利用得到的回归参数和光谱数据进行分类,能够获得较高的分类精度,其中算法步骤中的矩阵乘法、矩阵求逆、矩阵特征值计算采用CULA库函数并行实现。利用真实场景的高光谱图像对文中提出的并行计算优化方案实验验证,结果表明,该方法能够实现对多元回归参数计算加速200倍左右,对整个拉格朗日多项式逻辑回归分类算法计算加速60倍左右。 Since the computation of regression coefficient of the lagrange multinomial logistic regression algorithm (LORSAL) is time consuming, which make it very hard to apply on large data sets. In this paper, we present parallel optimization of LORSAL algorithm for remote sensing image classification based on GPU. Firstly, the LORSAL estimates the regression coefficient based on labeled training samples. Secondly, it performs classification with the priori regression coefficient and spectral data,which makes it have a relative high accuracy for hyperspeetral remote sensing classification. Meanwhile, the CULA routines are used for matrix multiplication, matrix inversion and eigenvalue calculation. The proposed parallel optimization is tested with real hyperspectral remote sensing images. Results show that the computation speed of the proposed method can obtain 200 times for regression coefficient calculation and 60 times for the whole algorithm when compared with the CPU part, respectively. The optimization schemes make it possible for large volume image classification with LORSAL algorithm.
出处 《遥感信息》 CSCD 北大核心 2016年第1期96-101,共6页 Remote Sensing Information
基金 国家自然科学基金(41301384)
关键词 拉格朗日多项式逻辑回归 遥感图像分类 GPU CULA 并行计算 LORSAL remote sensing image classification GPU CULA parallel computing
  • 相关文献

参考文献23

  • 1SHAW G, MANOLAKIS D. Signal processing for hyperspectral image exploitation[J]. Signal Processing Magazine, IEEE, 2002,19(1) : 12-16.
  • 2LI J, BIOUCAS-DIAS J M, PLAZA A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2010,48 (11) : 4085-4098.
  • 3LEE C A,GASSTER S D, PLAZA A, et al. Recent developments in high performance computing for remote sensing:a review[J]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2011,4 (3) : 508-527.
  • 4PLAZA A,DU O, CHANG Y L, et al. High performance computing for hyperspectral remote sensing[J]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2011,4 (3):528-544.
  • 5LOPEZ FANDINO J, HERAS D B, ARGUELLO F. Efficient classification of hyperspectral images on commodity GPUs using ELM-based techniques[C]//Proc. PDPTA.
  • 6QUESADA-BARRIUSO P, ARGUELLO F, HERAS D B. Computing efficiently spectral-spatial classification of hyperspectral images on commodity GPUs[M]//Recent Advances in Knowledge-based Paradigms and Applications. Springer International Publishing, 2014 : 19-42.
  • 7LUO Y H, GUO K, WANG D, et al. Hyperspectral remote sensing classification processing parallel computing research based on GPU[C]//Computer Science and Electronics Engineering (ICCSEE), 2012 International Conference on. IEEE,2012,1: 258-261.
  • 8BERNABE S, LOPEZ S, PLAZA A, et al. GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis[J]. Geoscienee and Remote Sensing Letters, IEEE, 2013,10 (2) : 221-225.
  • 9TARABALKA Y, HAAVARDSHOLM T V, KASEN L, et al. Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing[J]. Journal of Real-Time Image Processing,2009,4(3):287-300.
  • 10HERAS D B, ARGUELLO F, GOMEZ J L, et al. Towards real-time hyperspectral image processing, a GP-GPU implementation of target identification[C]//Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference on. IEEE,2011,1:316-321.

同被引文献30

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部