期刊文献+

基于监督超向量编码和自适应GMM的人脸表情识别方法

A Face Expression Recognition Method Based on Fusion of Supervised Super-vector Encoding and Adaptive GMM Model
下载PDF
导出
摘要 针对不同状态和光照条件下的人脸表情识别问题,提出一种基于自适应高斯混合模型(GMM)融合监督式超级向量编码算法。首先,提取重叠图像块;然后,通过自适应GMM提取每个图像块的局部描述子,将图像低维特征映射到高维空间;最后,利用有监督的超级向量编码完成人脸表情识别。在Multi-PIE和BU3D-FE多视点人脸表情数据库上的实验结果显示,本算法在Multi-PIE和BU3D-FE人脸库上的识别率可分别高达91.8%、95.6%,识别一个样本所耗时间仅为0.142 s。相比其他几种较新的算法,本算法取得了更高的识别率,且大大降低了识别所耗时间。 Facial expression recognition under different lighting conditions and states is a challenging research. A fusion algorithm based on adaptive Gaussian Mixture Model (GMM) and supervised super-vector encoding is proposed. Firstly, the overlapping image blocks are extracted. Then, local descriptor from each block is extracted by the adaptive GMM so as to map images in lowdimensional space to high-dimensional space. Finally, supervised super-vector encoding is used to do classification training. Experimental results on the Multi-PIE and BU3D-FE multi-view facial expression databases show that the recognition accuracy of proposed algorithm can achieve 91.8% and 95.6% respectively on Multi-PIE and BU3D-FE. It takes only 0. 142 seconds in identifying a sample on BU3D-FE. Proposed algorithm has higher recognition accuracy and less recognition time-consuming than several other excellent algorithms.
出处 《计算机与现代化》 2016年第2期15-20,共6页 Computer and Modernization
基金 江苏省高校自然科学研究项目(14KJB520036)
关键词 人脸表情识别 自适应 高斯混合模型 监督学习 超级向量编码 facial expression recognition adaptive Gaussian Mixture Model(GMM) supervised learning super-vector encoding
  • 相关文献

参考文献19

  • 1Anderson K, Mcowan P W. A real-time automated system for the recognition of human facial expressions [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 2006,36 ( 1 ) :96-105.
  • 2Wan Shaohua, Aggarwal J K. A scalable metric learning- based voting method for expression recognition [ C ]// The 10th IEEE International Conference on Automatic Face and Gesture Recognition(FG). 2013 : 1-8.
  • 3胡敏,朱弘,王晓华,许良凤.基于梯度Gabor直方图特征的表情识别方法[J].计算机辅助设计与图形学学报,2013,25(12):1856-1861. 被引量:25
  • 4张智斌,朱俊勇,郑伟诗,王倩,赖剑煌.基于二维局部鉴别高斯的特征提取方法[J].计算机科学,2014,41(6):275-277. 被引量:2
  • 5Zheng Wenming, Tang Hao, Huang T S. Emotion recogni- tion from non-frontal facial images [ M ]// Emotion Recogni- tion: A Pattern Analysis Approach. Wiley, 2015:183-213.
  • 6Zheng Wenming, Tang Hao, Lin Zhouchen, et al. A novel approach to expression recognition from non-frontal face im- ages[ C ]// International Conference on Computer Vision. 2009 : 1901-1908.
  • 7Tang Hao, Hasegawa-Johnson M, Huang T S. Non-frontal view facial expression recognition based on ergodic hidden Markov model super vectors [ C ]// IEEE International Con- ference on Multimedia and Expo (ICME). 2010: 1202- 1207.
  • 8Tariq U, Yang Jianchao, Humlg T S. Maximum margin GMM learning for facial expression recognition [ C ]// The 10th IEEE International Conference and Workshops on Au- tomatic Face and Gesture Recognition(FG). 2013:1-6.
  • 9Bourean Y L, Bach F, LeCun Y, et al. Learning mid-level features for recognition [ C ]// IEEE Conference on Com- puter Vision and Pattern Recognition. 2010:2559-2566.
  • 10李峰,王正群,周中侠,薛巍.半监督的稀疏保持二维边界Fisher分析降维算法[J].计算机辅助设计与图形学学报,2014,26(6):923-931. 被引量:5

二级参考文献28

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 2刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 3Abdat F. Maaoui C. Pruski A. Human-computer interaction using emotion recognition from facial expression[CJ I I Proceedings of the 5th UKSim European Symposium on Digital Object Identifier. Aire-Ia - Ville: Eurographics Association Press. 2011: 196-201.
  • 4Soyel H. Demirel H. Localized discriminative scale invariant feature transform based facial expression recognition[J]. Computers s, Electrical Engineering. 2012. 38 (5): 1299- 1309.
  • 5YiJ. Idrissi K. Automatic facial expression recognition based on spatiotemporal descriptors[J]. Pattern Recognition Letters. 2012. 33(10): 1373-1380.
  • 6Zhan Y Z. YeJ F. Niu DJ. et al . Facial expression recognition based on Gabor wavelet transformation and elastic templates matching[CJ IIProceedings of the 3rd International Conference on Image and Graphics. Los Alamitos: IEEE Computer Society Press. 2004: 254-257.
  • 7Zhang Z. Zhao Z. Yuan T T. Expression recognition based on multi -scale block local Gabor binary patterns with dichotomy-dependent weights[MJ IILecture Notes in Computer Science. Heidelberg: Springer. 2009. 5552: 895- 903.
  • 8Liu S S. Tian Y T. Facial expression recognition method based on Gabor wavelet features and fractional power polynomial kernel PCA[MJ II Lecture Notes in Computer Science. Heidelberg: Springer. 2010. 6064: 144-151.
  • 9Sun X H. Xu H X. Zhao C X. et al . Facial expression recognition based on histogram sequence of local Gabor binary patterns[CJ IIProceedings of IEEE Conference on Cybernetics and Intelligent Systems. Los Alamitos: IEEE Computer Society Press. 2008: 384-389.
  • 10Liu H B. Zhang G B. Huang Y M. et al . Multiple features extraction and coordination using Gabor wavelet transformation and fisherfaces with application to facial expression recogni tion[CJ //Proceedings of Chinese Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2010: 1-5.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部