期刊文献+

k-means聚类算法在织物疵点检测中的应用 被引量:6

Fabric defect detection based on k-means clustering
下载PDF
导出
摘要 为检测常见织物的各种疵点,提出一种基于k-means聚类的织物疵点检测方法。对采集的图像进行中值滤波,以减轻纹理对疵点检测的影响,并利用方差采样算法增强织物的疵点特征信息;利用k-means聚类算法对方差采样后的图像进行处理,使得疵点区域被划分一类,非疵点区域划分为一类。最后经过二值化,分割出疵点。实验证明,该方法能快速、准确的检测出织物的常见疵点。与其他方法相比,文章提出的算法采用聚类思想对织物疵点进行分割,不需要利用正常织物图像进行阈值计算;另外经过方差采样算法处理后疵点信息明显增强,使得疵点信息与纹理明显不同,从而使聚类更为准确,增加了检测的准确度。 To detect a variety of common fabric defects, a new method based on k-means clustering is proposed. Firstly, the median filtering method is applied to reduce the impact of the texture on fabric defect detection, and the sampling variance algorithm is used to enhance the fabric defect feature information. Then, the k-means clustering algorithm is used to process the image after sampling variance, so that the image could be divided into two types of regions: defect area and non-defect area. Finally, defects are segmented using binary. Experimental results showed that the proposed method could detect the common fabric defects quickly and accurately. Compared with other methods, the proposed method uses clustering ideological to segment the fabric defect, and does not require calculated threshold. In addition, the defects information are obviously enhanced using the variance sampling algorithm, so the defects information becomes very different from texture. Therefore the cluster of sample are more accurate, and the accuracy of detection are higher.
出处 《毛纺科技》 CAS 北大核心 2016年第3期11-14,共4页 Wool Textile Journal
基金 国家自然科学基金(21301134) 中国纺织工业联合会科技指导性项目(2013066) 西安工程大学大学生创新创业训练计划项目(201510709353)
关键词 疵点检测 织物疵点 K-MEANS聚类算法 方差采样 defect detection fabric defects k-means clustering sampling variance
  • 相关文献

参考文献14

  • 1Mak K L, Peng P. Detecting defects in textile Fabrics with optimal Gabor filters [ J ]. International Journal of Computer Science. 2006,1 (4) :274 - 282.
  • 2Conci A, Proenca C B. A fractal image analysis system for fabric inspection based on box-counting method [ J ]. Comput Netw ISDN Syst,1998,30(20) : 1887 - 1895.
  • 3邹超,汪秉文,孙志刚.基于机器视觉的织物疵点检测方法综述[J].天津工业大学学报,2009,28(2):78-82. 被引量:20
  • 4Mak K L, Peng P, Yiu K F C. Fabric defect detection using multi-level tuned-matched Gabor filters[Jl. Journal of Industrial and Management Optimization, 2012, 8 (2) : 325 - 341.
  • 5Bodnarova A, Bennamoun M, Latham S. Optimal gabor fihers for textile flaw detection [ J ]. Pattern Recognition,2002, 35 ( 12 ) : 2973 - 2991.
  • 6Yang X Z, Pang G K H, Yung N H C. Discriminative fabric defect detection using adaptive wavelets [ J ]. Optical Engineering, 2002, 41 (12) : 3116 -3126.
  • 7朱丹丹,潘如如,高卫东.基于傅里叶特征谱和相关系数的织物疵点检测[J].计算机工程与应用,2014,50(19):182-186. 被引量:23
  • 8陈晓惠,郑晨,段汕,秦前清,胡亦钧.形态小波域多尺度马尔可夫模型在纹理图像分割中的应用[J].中国图象图形学报,2011,16(5):761-766. 被引量:11
  • 9Bodnarova A, Bennamoun M, Latham S. Optimal Gabor filters for textile flaw detection [ J ]. Pattern Recognition, 2002, 35 (12) : 2973 -2991.
  • 10Zhang Y H, Wong W K. An intelligent model for detecting and classifying color-textured fabric defects using genetic algorithms and the Elman neural network [ J ]. Textile Research Journal, 2011, 81(17): 1772 -1787.

二级参考文献23

  • 1李立轻,黄秀宝.Fabric Defect Detection Using Adaptive Wavelet Transform[J].Journal of Donghua University(English Edition),2002,19(1):35-39. 被引量:4
  • 2张宇镭,党琰,贺平安.利用Pearson相关系数定量分析生物亲缘关系[J].计算机工程与应用,2005,41(33):79-82. 被引量:100
  • 3邹超,朱德森,肖力.基于模糊类别共生矩阵的纹理疵点检测方法[J].中国图象图形学报,2007,12(1):92-97. 被引量:21
  • 4Bu H G,Huang X B,Wang J,et al.Detection of fabric defects by auto-regressive spectral analysis and support vector data description[J].Text Res J,2010,80:579-589.
  • 5Mak K,Peng P,Yiu K.Fabric defect detection using morphological filters[J].Image Vision Comput,2009,27:1585-1592.
  • 6Shady E,Gowayed Y,Abouiiana M,et al.Detection and classification of defects in knitted fabric structures[J].Text Res J,2006,76:295-300.
  • 7Zhang X Y,Pan R R,Gao W D,et al.Design Gabor filters in the frequency domain for unsupervised fabric defect detection[J].Industrial Textilǎ,2011,62(4):177-182.
  • 8Kumar A.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
  • 9Ngan H Y T,Pang G K H,Yung N H C.Automated fabric defect detection—a review[J].Image and Vision Computing,2011,29(7):442-458.
  • 10Chan C H,Pang G K H.Fabric defect detection by Fourier analysis[J].IEEE Transactions on Industry Applications,2000,36(5):1267-1276.

共引文献51

同被引文献41

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部