期刊文献+

导轨式电磁发射装置电枢熔化波有限元计算 被引量:3

Finite Element Analysis of Melt Wave Ablation in Electromagnetic Rail Launcher Armatures
下载PDF
导出
摘要 针对单元烧蚀算法精度较低的问题,基于导轨式电磁发射装置的二维控制方程,推导出采用求解量移动法处理运动问题的伽辽金有限元离散方程,建立了电磁-温度-运动耦合场有限元计算模型。以单元节点为烧蚀判断对象,采用节点烧蚀算法处理电枢材料烧蚀问题,建立了电枢熔化波模型,对运动电枢的烧蚀速度进行了数值计算。模型的计算结果表明:在激励电磁感应强度为40T、电枢运动速度为150m/s的情况下,采用节点烧蚀法得到的熔化波烧蚀速度为Barber理论模型计算值的94%,而相关文献采用单元烧蚀法的计算值为Barber理论模型计算值的73%。因此,与采用单元烧蚀法相比,采用节点烧蚀法的计算值与Parks和Barber两个经典理论模型的计算值更加相近,验证了该方法的正确性。 Aiming at the low accuracy of element melt method in predicting the wave melt ablation (WMA) velocity, a new finite element method of melt wave ablation is proposed. Based on a two-dimensional governing equation of electromagnetic rail launcher, a Galerkin form finite element discrete formulation for dealing with moving boundary by potential moving method is derived, then the finite element model of transient electromagnetic-thermal-moving coupling problem in two dimensions is established. Using node element as the criterion, the armature' WMA model is built. Computational results show that when the armature moving speed is 150 m/s and the applied magnetic induction intensity is 40 T, the WMA velocity predicted by the node melt method (NMM) is 94% of that predicted by Barber's models, while the WMA velocity predicted by Stefani using element melt method(EMM) is 73% of that predicted by Barber's models. Thus, compared with EMM, the WMA velocity predicted by NMM is closer to the results of Parks' and Barber's classic models, which verifies the correctness of the proposed NMM method.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第3期106-111,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51207162 51522706 51407191) 国家重点基础研究发展计划资助项目(613262)
关键词 导轨式电磁发射装置 运动边界 电枢 熔化波 烧蚀速度 耦合场 相变 electromagnetic rail launcher~ moving boundary armature wave melt ablation velocity coupling field phase change
  • 相关文献

参考文献14

  • 1ENGEL T G, NERI J M, VERACKA M J. Charac- terization of the velocity skin effect in the surface layer of a railgun sliding contact[J].IEEE Transactions on Magnetics, 2007, 44(17): 1837-1844.
  • 2GHASSEMI M, MOLAYI Y, HAMEDI M H. Anal- ysis of force distribution acting upon the rails and the armature and prediction of velocity with time in an electromagnetic launcher with new method[J]. IEEE Transactions on Magnetics, 2007, 43(1): 132-136.
  • 3李昕,翁春生.固体电枢电磁导轨炮非稳态电磁效应[J].南京理工大学学报,2009,33(1):108-111. 被引量:11
  • 4HSIEH K T. Lagrangian formulation for mechanical- ly, thermally coupled electromagnetic diffusive proces- ses with moving conductors [J]. IEEE Transactions on Magnetics, 1995, 31(1): 604-609.
  • 5LIU Hsingpang, LEWIS M C. 3-D electromagnetic analysis of armatures and rails for high launch energy applications [J]. IEEE Transactions on Magnetics, 2009, 45(1): 322-326.
  • 6王刚华,谢龙,王强,宋盛义,胡熙静,王文斗.电磁轨道炮电磁力学分析[J].火炮发射与控制学报,2011,32(1):69-71. 被引量:14
  • 7PARKS P. Current melt wave model for transitioning solid armatures [J]. Journal of Applied Physics, 1990, 67(7): 3511-3516.
  • 8BARBER J, DREIZIN Y. Model of contact transitio- ning with realistic armature rail interface [J]. IEEE Transactions on Magnetics, 1995, 31(1): 96-100.
  • 9BENTON T, STEFANI F, SATAPATHY S, et al. Numerical modeling of melt wave erosion in conductors [J]. IEEE Transactions on Magnetics, 2003, 39(1) : 129-133.
  • 10MERRILL R, STEFANI F. Electrodynamics of the current melt wave erosion boundary in a conducting half-space [J ]. IEEE Transactions on Magnetics, 2003, 39(1):66-71.

二级参考文献44

  • 1岳宝增,彭武,王照林.ALE迎风有限元法研究进展[J].力学进展,2005,35(1):21-29. 被引量:7
  • 2Powell J D, Zielinski A E. Observation and simulation of solid-armature railgun performance [ J ]. 1EEE Trans on Magn, 1999, 35 ( 1 ) : 84 - 89.
  • 3Powell J D, Zielinski A E. Current and heat transport in the solid-armature railgun [ J ]. IEEE Trans on Magn, 1995, 31(1): 645-650.
  • 4Zielinski A E,Powell J D. Current and Heat Transport in the Cannon-Caliber Electromagnetic Gun Armature[ R ]. ADA2999d0, 1995.
  • 5Zielinski A E, Powell J D. Current and Heat Transport in a Double Taper Sabot-Armature [ R ]. ADA- 3932O2, 2001.
  • 6James T E. Why solid armatures fail and how they can be improved[J]. IEEE Trans on Magn, 2003, 39(1): 56 - 61.
  • 7Merrill R, Stefani F A. Turbulent mehlubrication model of surface wear in railgun armatures[J]. IEEE Trans on Magn, 2005, 41(1): 414-419.
  • 8Watt T, Stefani F. Experimental and computational investigation of root-radius melting in C-shaped solid armatures[J]. IEEE Trans on Magn, 2005, 41 ( I ) : 442 - 447.
  • 9Young F J, Hughes W F. Hail and armature current distributions ill electromagnetic launchers [ J ]. IEEE Transactions on Magnetics, 1982,18 ( 1 ) : 33 -41.
  • 10Parks P B. Current melt-wave model for transitioning solid armature [ J ]. Journal of Applied Physics, 1990, 67(7) :3511-3516.

共引文献32

同被引文献37

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部