期刊文献+

铽离子-镧系金属结合标签的荧光探针的改进 被引量:1

Improvement of Fluorescence Quantum Yield for Terbium(Ⅲ)-Bound Lanthanide-Binding Tag
下载PDF
导出
摘要 镧系金属因其具有较窄的发射光谱带,较大的斯托克斯位移以及毫秒级的荧光寿命,而被广泛应用于荧光检测中,其中Tb^(3+)、Eu^(3+)最为常用.镧系金属结合标签(Lanthanide Binding Tag,LBT)可以与蛋白质融合表达,并且一般不会影响蛋白的结构和功能,这些特点使LBT被广泛应用于蛋白质结构与功能研究中.LBT能够特异性地结合镧系金属离子,并利用LBT上色氨酸的吲哚环作为"天线"吸收外部能量,再将能量传递给镧系金属离子,进而激发镧系金属离子产生荧光.该文以经典模式蛋白泛素(Ubiquitin,Ub)作为媒介,将LBT引入到Ub的碳端,采用定点突变的方法增加LBT上吲哚环的数量,观察Ub-LBT[结合铽离子(Tb^(3+))]荧光量子产率的变化.结果表明在LBT结构中增加吲哚环的数量能够提高LBT(结合Tb^(3+))的荧光量子产率. Long-lived luminescence lifetime and large Stokes shift of the lanthanide ion made it widely used in fluorescence detection. The lanthanide-binding tag (LBT) is a small, genetically encoded, versatile protein fusion partner that specifically binds a lanthanide ion with high affinity (KD ≈ 10^-9 mol/L). These properties make LBT wildly used for studies on protein structures and functions. Lanthanide in LBT cannot be excited directly, and tryptophan is needed to serves as a sensitizer to absorb energy and transfer energy to the lanthanide. We introduced LBT onto the C-terminal of ubiquitin (Ub), and increased the number of indole rings in LBT using site-directed mutagenesis to increase the quantum yield of Tb (Ⅲ)-bound Ub-LBT.
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第1期106-116,共11页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金青年科学基金资助项目(31400735)
关键词 荧光光谱学 镧系金属结合标签(LBT) 荧光量子产率 解离常数 泛素(Ub) fluorescence spectroscopy, lanthanide-binding tag (LBT), quantum yield,dissociation constant, ubiquitin (Ub)
  • 相关文献

参考文献26

  • 1Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr A, 1976, 32(5): 751 --767.
  • 2Lakowicz J R, Keating S. Binding of an indole derivative to micelles as quantified by phase-sensitive detection of fluorescence[J]. J Biol Chem, 1983, 258(9): 5 519--5 524.
  • 3Hemmila I, Laitala V. Progress in lanthanides as huninescent probes[J]. J Fluoresc, 2005, 15(4): 529--542.
  • 4Bunzli J C G. Benefiting from the unique properties of lanthanide ions[J]. Ace Chem Res, 2006, 39(1): 53 --61.
  • 5Liu Y S, Zhou S Y,, Tu D T, et al. Amine-fimctionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging[J]. J Am Chem Soc, 2012, 134(36): 15 083--15 090.
  • 6Lehmusvuori A, Tapio A H, Maki-Teeri P, et al. Homogeneous duplex polymerase chain reaction assay using switchable lanthanide fluorescence probes[J]. Anal Biochem, 2013, 436(1): 16--21.
  • 7Martin R B, Richardson F S. Lanthanides as probes for calcium in biological-systems[J]. Q Key Biophys, 1979, 12(2): 181 --209.
  • 8Mulqueen P, Tingey J M, Horrocks W D. Characterization of lanthanide(III) ion binding to calmodulin using luminescence spectroscopy[J]. Biochemistry-US, 1985, 24(23): 6 639--6 645.
  • 9Ye Y M, Lee H W, Yang W, et al. Probing site-specific calmodulin calcium and lanthanide affinity by graining[J]. J Am Chem Soc, 2005, 127(11): 3 743--3 750.
  • 10Biekofsky R R, Muskett F W, Schmidt J M, et al. NMR approaches for monitoring domain orientations in calcium-binding proteins in solution using partial replacement of Ca2~ by Tb3+[J]. Febs Lett, 1999, 460(3): 519--526.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部