期刊文献+

基于改进的LMD运动想象信号识别 被引量:3

Recognition for motor imagery signal based on improved LMD
下载PDF
导出
摘要 针对脑电信号非平稳非线性特征,提出基于改进的局部均值分解(Local Mean Decomposition,LMD)运动想象信号分类方法。首先结合改进LMD算法和加窗原则选取4-6 s想象信号作为分类数据,提取包含μ节律和β节律的PF分量;其次计算所选分量的样本熵值;最后用支持向量机进行分类预测,并用分类准确率进行评估。实验结果表明,运用改进LMD比传统LMD方法的识别率更高,从而验证该方法的有效性。 For the non- stationary and non- linear characteristics of electroencephalogram( EEG), this paper proposes a classification method based improved local mean decomposition( LMD) for motor imagery signal. Firstly, combining the improved LMD with window principle to select imagery signal of 4 - 6 second as classification data, and extract components PF that contain μ rhythm and βrhythm. Secondly, the sample entropy of corresponding components PF is calculated. Finally, the EEG is classified with support vector machine( SVM) and evaluated by the accuracy. The experiment results indicate that the improved LMD algorithm is better than traditional LMD algorithm in classification accuracy, which turns out the effectiveness of proposed approach.
出处 《电子技术应用》 北大核心 2016年第3期116-119,共4页 Application of Electronic Technique
基金 山西省青年基金项目(2013021016-3)
关键词 LMD 加窗原则 样本熵 PF分量 支持向量机 local mean decomposition window principle sample entropy PF components support vector machine
  • 相关文献

参考文献8

  • 1PFURTSCHELLER G,NEUPER C.Future prospects of ERD/ERS in the context of brain-computer interface(BCI)developments[J].Progress in Brain Research,2006,159(1):433-437.
  • 2SMITH J S.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2006,2(5):443-54.
  • 3赵娜.HHT经验模式分解的周期延拓方法[J].计算机仿真,2008,25(12):346-350. 被引量:14
  • 4刘慧,和卫星,陈晓平.生物时间序列的近似熵和样本熵方法比较[J].仪器仪表学报,2004,25(z1):806-807. 被引量:29
  • 5朱晓军,吕士钦,王延菲,余雪丽.改进的LMD算法及其在EEG信号特征提取中的应用[J].太原理工大学学报,2012,43(3):339-343. 被引量:7
  • 6RICHMAN J S,MOORMAN J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology Heart&Circulatory Physiology,2000,278(6):H2039-H2049.
  • 7DURBBA S S,KING R L,YOUNAN N H.Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer[J].Remote Sensing of Environment,2007,107(1):348-361.
  • 8BLANKERTZ B.The BCI Competition 2003:progress and perspectives in detection and discrimination of EEG singletrials[J].IEEE Trans.Biomed.Eng.,2004,51(6):1044-1051.

二级参考文献21

  • 1刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理[J].计算机工程与应用,2004,40(16):84-86. 被引量:121
  • 2杨晋辉,郦萌.安全苛求软件的安全性混沌分析[J].计算机工程与应用,2005,41(21):1-3. 被引量:3
  • 3王松.基于MATLAB的系统仿真教学软件的设计[J].计算机仿真,2005,22(11):278-281. 被引量:4
  • 4许宝杰,张建民,徐小力,李建伟.抑制EMD端点效应方法的研究[J].北京理工大学学报,2006,26(3):196-200. 被引量:54
  • 5N E Huang, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non - stationary time series analysis [C]. Proceedings of the Royal Society of London, 1998, 454: 903 - 995.
  • 6Z Wu, N E Huang, Statistical significant test of intrinsic mode functions. Hilbert - Huang Transform and its applications [ M ]. Singapore : World Scientific, 2005.
  • 7N E Huang. A confidence limit for the empirical mode decomposition and Hilbert spectral[ C]. Proceedings of the Royal Society of London, 2003, 459 : 2317 -2345.
  • 8[1]Pincus S M. Approximate entropy as a mesure of system complexity. Proc. Natl. Acad. Sci. USA. 1991,88: 2297- 2301.
  • 9[2]Richman Joshua S,J. Randall Moorman. Physiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Physio., 2000,278:H2039~2049.
  • 10Pablo Valenti, Enrique Cazamajou, Marcelo Scarpettini,et al. Automatic detection of interictal spikes using data mining models[J]. Journal of Neuroscience Methods,2006,150(1) : 105-110.

共引文献47

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部