期刊文献+

一类典型余模代数的等变分解

Equivariant Resolutions for a Class of Model Comodule Algebras
下载PDF
导出
摘要 本文给出了非退化双线性型量子自同构群的一类典型余模代数的等变分解,由此得知此类余模代数满足Hochschild同调和上同调间的Poincaré对偶. This paper gives equivariant resolutions for a class of model comodule algebras of quantum automorphisrn groups of non-degenerate bilinear forms. Consequently, such comodule algebras satisfies the Poincare duality between Hochschild homology and cohomology.
作者 俞晓岚
出处 《杭州师范大学学报(自然科学版)》 CAS 2016年第1期67-70,共4页 Journal of Hangzhou Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11301126) 浙江省自然科学基金项目(LQ12A01028)
关键词 典型余模代数 等变分解 Poincaré对偶 model comodule algebra equivariant resolution Poincare duality
  • 相关文献

参考文献10

  • 1DUBOIS-VIO1.ETTE M, LAUNER G. The quantum group of a non-degenerate bilinear {ormEJl. Phys Lett B, 1990,245 (2) : 175 177.
  • 2BICHON J. Hochschild homology of Hopf algebras and free Yetter-Drinfeld resolutions of the couint[J]. Compos Math, 2013,149 (3) 658-678.
  • 3COLLINSB, HARTELJ, THOM A. Homology of free quantum groups[J]. Comptes Rendus Mathematique,2009,347(5)=271 276.
  • 4HADFIELD T, KR,HMER S. Twisted homology of quantum SI.(2)[J]. K-Theory, 2005,34(4) ,327-360.
  • 5BICHON J. Hopf-Galois objects and cogroupoids[J]. Rev Un Mat Argentina, 2014,55=11-69.
  • 6KLIMYK A, SCHMUDGEN K. Quantum groups and their representations[M]. Berlin= Springer, 1997.
  • 7DUBOIS-VIOLETTE M. Multilinear forms and graded algebras[J]. J Algebra, 2007,317(1) = 198-225.
  • 8LIU L Y, WANG S Q, WU Q S. Twisted Calabi Yau property of Ore extensions[J]. J Noneommut Geom, 2014,8:587-609.
  • 9VAN DEN BERGH M. A relation between Hoehschild homology and cohomology for Gorenstein rings[J]. Proe Amer Math Soc, 1998 126(5) 1345-1348.
  • 10HE J W, VAN OYSTAEYEN F, ZHANG Y H. Deformations of Koszul Artin-Schelter Gorenstein algebras[J]. Manuscripta Math 2013,141 (3-4) :463-483.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部