期刊文献+

结核分枝杆菌PPE家族蛋白CD4^+ T细胞泛宿主表位的计算机预测及其γ干扰素释放实验研究

Computational Prediction of Promiscuous CD4^+ T-cell Epitopes from PPE Protein Family of Mycobacterium tuberculosis and IFN-γ Release Assays
下载PDF
导出
摘要 目的利用计算机预测结核分枝杆菌PPE家族蛋白MHC-II类分子限制性CD4+T细胞泛宿主表位,并利用γ干扰素释放实验进行体外验证。方法利用网上数据库提取PPE家族全部蛋白序列。使用生物信息学软件包括Signal P4.1,Secretome P 2.0,DAS和Net MHCII2.2等分析工具预测、筛选出MHC-II类分子限制性CD4+T细胞泛宿主表位。最后利用γ干扰素释放实验进行合成肽段的体外实验验证其刺激激活CD4+T细胞的能力。结果发现了34个泛宿主表位多肽,其中21个来自于PPE8蛋白,其余来自于PPE12、PPE21和PPE62蛋白。γ干扰素释放实验并未发现预测出的泛宿主表位多肽可刺激大量的CD4+T淋巴细胞产生IFN-γ的分泌,但来自于PPE8蛋白的两个泛宿主表位多肽可刺激少量的CD4+T淋巴细胞产生反应。结论这些计算机预测出来的泛宿主表位多肽,尤其是来自PPE8蛋白的泛宿主表位多肽,可能是下一步亚单位疫苗或诊断性标志物的重要候选抗原。但仍需进一步扩大样本量进行验证。 Objective To present a computational approach to screen and select promiscuous MHC class II restricted CD4+T cell epitopes in the PPE protein family of M. tuberculosis and evaluate the level of protection in IFN-γ release assays. Methods Through database access to protein sequences of the PPE protein family,and some bioinformatics programs including Signal P4. 1 server, Secretome P 2. 0 server, DAS server, and Net MHCII2. 2 server were used to predict human promiscuous MHC class II restricted CD4+T cell epitopes.Then IFN-γ release assay was used to confirm the ability of certain epitopes to stimulate and activate CD4+T cell. Results Thirty-four promiscuous epitope peptides were identified; 21 from PPE8 and others from PPE12,PPE21 and PPE62. IFN-γ release assay did not provide evidence of a significant IFN-γ+CD4+T cell response to these promiscuous epitope peptides. Two epitope peptides from PPE8 protein could activate weak immune responses. Conclusion Prediction analysis showed that these promiscuous epitope peptides,especially from PPE8 protein,may be important targets in subunit vaccines or diagnostic antigens against MTB. Future research need to base upon larger sample.
出处 《标记免疫分析与临床》 CAS 2016年第2期206-212,共7页 Labeled Immunoassays and Clinical Medicine
基金 国家自然科学基金(No.81200064)
关键词 泛宿主表位 预测 MHC II类分子 PPE家族蛋白 结核分枝杆菌 Γ干扰素 Promiscuous epitopes Prediction Major histocompatibility complex class II PPE protein family Mycobacterium tuberculosis Gamma interferon
  • 相关文献

参考文献24

  • 1World Health Organization. (2015) Global tuberculosis Report 2015. Available from: http://www, who. int/tb/publications! global_report/err/.
  • 2Abraham P R, Latha G S, Valluri V L, et al. Mycobacterium tuberculosis PPE protein Rv0256c induces strong B cell response in tuberculosis patients. Infect Genet Evol, 2014, 22: 244-249.
  • 3Sayes F, Sun L, Di Luca M, et al. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe, 2012, 11 (4) : 352-363.
  • 4樊博,王巍,程小星.结核分枝杆菌PE和PPE家族蛋白抗原性的生物信息学分析[J].中华临床医师杂志(电子版),2010,4(8):140-143. 被引量:3
  • 5Lin P L, Flynn J L. Understanding latent tuberculosis: a moving target. J. Immunol, 2010, 185( 1 ) : 15-22.
  • 6Harari A, Rozot V, Enders F B, et al. Dominant TNF-α + Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med, 2011, 17(3) : 372-376.
  • 7Cole S T,Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393 (6685) : 537-544.
  • 8Sampson S L. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol, 2011, 2011 : 497203.
  • 9Menne K M, Hermjakob H, Apweiler R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics, 2000, 16 ( 8 ) : 741-742.
  • 10Cserz8 M,Wallin E, Simon I, et al. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng, 1997, 10(6) : 673-676.

二级参考文献21

  • 1Smith SM,Klein MR,Malin AS,et al.Human CD8(+) T cells specific for Mycobacterium tuberculosis secreted antigens in tuberculosis patients and healthy BCG-vaccinated controls in The Gambia.Infect Immun,2000,68 (12):7144-7148.
  • 2Boesen H,Jensen BN,Wilcke T,et al.Human T-cell response to secreted antigen fractions of Mycobacterium tuberculosis.Infect Immun,1995,63(4):1491-1497.
  • 3Vordermeier HM,Villarreal-Ramos B,Cockle PJ,et al.Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.Infect Immun,2009,77(8):3364-3373.
  • 4Dietrich J,Andersen C,Rappuoli R,et al.Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity.J Immunol,2006,177(9):6353-6360.
  • 5Delogu G,Brennan MJ.Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis.Infect Immun,2001,69(9):5606-5611.
  • 6Abdallah AM,Verboom T,Hannes F,et al.A specific secretion system mediates PPE41 transport in pathogenic mycobacteria.Mol Microbiol,2006,62(3):667-679.
  • 7WHO.Global tuberculosis control:a short update to the 2009 report,2009.
  • 8Brewer TF,Colditz GA.Relationship between bacille Calmette-Guérin (BCG) strains and the efficacy of BCG vaccine in the prevention of tuberculosis.Clin Infect Dis,1995,20(1):126-135.
  • 9Kaufmann,SH.Is the development of a new tuberculosis vaccine possible? Nat Med,2000,6(9):955-960.
  • 10Xing Z.The hunt for new tuberculosis vaccines:anti-TB immunity and rational design of vaccines.Curr Pharm Des,2001,7(11):1015-1037.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部