期刊文献+

碱性条件下苏云金芽胞杆菌基础代谢分析

The analysis of major metabolic pathways in Bacillus thuringiensis under alkaline stress
原文传递
导出
摘要 【目的】探索苏云金芽胞杆菌(Bacillus thuringiensis)形成转录差异的碱性条件,明确B.thuringiensis在该条件下的基础代谢途径变化。【方法】采用半定量RT-PCR技术及实时荧光定量PCR技术,确定碱刺激下参考基因psp A存在表达差异的碱性处理条件。在该条件下提取RNA进行Agilent定制B.thuringiensis表达谱芯片杂交,对芯片数据进行差异表达分析、GO富集分析及生物途径富集分析等。【结果】通过检测psp A表达变化,将对数生长中期的菌体加入终浓度为28 mmol/L的Na OH并诱导培养10min,作为B.thuringiensis响应碱刺激的研究条件。富集分析表明碳代谢、脂肪酸合成代谢、氨基酸合成代谢途径变化明显。细胞糖酵解途径至少19个酶促基因上调表达,三羧酸循环中催化α-酮戊二酸转化为苹果酸的大部分酶蛋白编码基因上调2倍以上。【结论】本研究发现在碱性条件下B.thuringiensis基础代谢明显增强,细胞可能通过大量合成酸性物质如乳酸、苹果酸等来提高细胞对于碱性环境的适应能力。 [Objective] The study aimed to determine the appropriate stage for exploring the response of Bacillus thuringiensis to the alkaline stress, to profile the metabolic pathways under this stress. [Methods] Using semiquantitative RT-PCR and q RT-PCR, the proper stage was defined by monitoring the transcriptional changes of marker gene psp A, which was known as a responsive gene under the alkaline stress. The total RNA was then extracted to perform the microarray hybridizations for samples under stress and control, respectively. Gene Ontology and pathway enrichments were conducted to analyze the global changes of carbon metabolism, metabolism of fatty acid synthesis and amino acid. [Results] For B. thuringiensis in the mid-log growth phase, treatment of 28 mmol/L Na OH for 10 mins is the feasible approach to analyze the response of B. thuringiensis to this stress. More than twenty genes encoding important enzymes in glycolytic pathway were up-regulated and majority of genes involved in catalyzing alpha-ketoglutarate into malic acid were also found to up-regulated more than two folds. [Conclusion] By analyzing the gene expression profile, the major metabolisms of B. thuringiensis were found to be clearly enhanced under alkaline stress. Large quantities of acid including malic acid and lactic acid may contribute a lot to the adaptation of alkaline condition.
出处 《微生物学报》 CAS CSCD 北大核心 2016年第3期485-495,共11页 Acta Microbiologica Sinica
基金 国家自然科学基金(31530095)~~
关键词 苏云金芽胞杆菌 耐碱适应 基础代谢 苹果酸 Bacillus thuringiensis alkaline resistance major metabolic pathways malic acid
  • 相关文献

参考文献22

  • 1Fedhila S,Buisson C,Dussurget O,Serror P,Glomski IJ,Liehl P,Lereclus D,Nielsen-LeRoux C.Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella.Journal of Invertebrate Pathology,2010,103(1):24-29.
  • 2Berenbaum M.Adaptive significance of midgut pH in larval Lepidoptera.American Naturalist,1980:138-146.
  • 3Knowles BH.Mechanism of action of Bacillus thuringiensis insecticidal d-endotoxins.Advances in Insect Physiology,1994,24:275-308.
  • 4Cao M,Kobel PA,Morshedi MM,Wu MFW,Paddon C,Helmann JD.Defining the Bacillus subtilis 8W regulon:a comparative analysis of promoter consensus search,run-off transcription/macroarray analysis(ROMA),and transcriptional profiling approaches.Journal of Molecular Biology,2002,316(3):443-457.
  • 5Flahaut S,Hartke A,Giard J-C,Auffray Y.Alkaline stress response in Enterococcus faecalis:adaptation,cross-protection,and changes in protein synthesis.Applied and Environmental Microbiology,1997,63(2):812-814.
  • 6Kleerebezem M,Crielaard W,Tommassen J.Involvement of stress protein PspA(phage shock protein A)of Escherichia coli in maintenance of the protonmotive force under stress conditions.The EMBO Journal,1996,15(1):162.
  • 7Wiegert T,Homuth G,Versteeg S,Schumann W.Alkaline shock induces the Bacillus subtilis 5W regulon.Molecular Microbiology,2001,41(1);59-71.
  • 8Stancik LM,Stancik DM,Schmidt B,Barnhart DM,Yoncheva YN,Slonczewski JL.pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli.Journal of Bacteriology,2002,184(15):4246-4258.
  • 9Kawano M,Igarashi K,Kakinuma Y.Isolation of Enterococcus hirae mutant deficient in low-affinity potassium uptake at alkaline pH.Bioscience,Biotechnology,and Biochemistry,2002,66(7):1597-1600.
  • 10Trchounian A,Kobayashi H.Relationship of K+-Uptaking system with H-translocating ATPase in Enterococcus hirae,grown at a high or low alkaline pH.Current Microbiology^1998,36(2):114-118.

二级参考文献27

  • 1SambrookJ,RussellDW.分子克隆实验指南,第三版.黄培堂,译.北京:科学出版社,2002.
  • 2Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D,Crickmore N. Bacillus thuringiensis ?? an impotentpathogen? Trends in Microbiology, 2010, 18(5): 189-194.
  • 3Fedhila S, Buisson C, Dussurget 0, Serror P, Glomski IJ,Liehl P, Lereclus D, Nielsen-LeRoux C. Comparativeanalysis of the virulence of invertebrate and mammalianpathogenic bacteria in the oral insect infection modelGalleria mellonella. Journal of Invertebrate Pathology,2010,103(1) : 24-29.
  • 4Wiegert T, Homuth G, Versteeg S, Schumann W. Alkalineshock induces the Bacillus subtilis sigma ( W ) regulon.Molecular Microbiologyy 2001,41 (1) ; 59-71.
  • 5Helmann JD. The extracytoplasmic function ( ECF) sigmafactors. Advances in Microbial physiology, 2002,46: 47-.
  • 6Zellmeier S, Schumann W, Wiegert T. Involvement of Clpprotease activity in modulating the Bacillus subtilis sigmaWstress response. Molecular Microbiology,2006,61(6):1569-1582.
  • 7Frees D,Savijoki K, Varmanen P,Ingmer H. Clp ATPasesand ClpP proteolytic complexes regulate vital biologicalprocesses in low GC, Gram-positive bacteria. MolecularMicrobiology, 2007’ 63(5) : 1285-1295.
  • 8Yu AY, Houry WA, ClpP : a distinctive family ofcylindrical energy-dependent serine proteases. FEBSLetters, 2007’ 581(19) : 3749-3757.
  • 9Gottesman S, Clark WP, Maurizi MR. The ATP-dependentClp protease of Escherichia coli. Sequence of clpA andidentification of a Clp-specific substrate. The Journal ofBiological Chemistry, 1990,265(14) : 7886-7893.
  • 10Lemos JA, Burne RA. Regulation and physiologicalsignificance of ClpC and ClpP in Streptococcus mutans.Journal of Bacteriology, 2002,184(22) : 6357-6366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部