期刊文献+

结合粗糙集约简的纹理特征影像分类 被引量:1

Image Classification of Texture Feature Combined with Rough and Intensive Reduction
下载PDF
导出
摘要 基于光谱特征的影像分类精度过低,不能满足生产的需要,所以研究利用其他辅助手段来提高遥感影像的分类成为未来发展的一个重要方向。使用灰度共生矩阵对研究影像进行纹理特征提取,得到8种纹理特征,然后利用粗糙集约简中的遗传算法对8种纹理特征进行纹理特征选择,最后得到一组最优组合;利用这一最优组合与原始影像融合产生新的影像,对新影像进行分类。通过实验对比分析证明,约简后的纹理特征辅助光谱特征分类能够提高遥感影像分类的准确性和精度。 Abstract:Owing to the fact that low image classification accuracy of spectral characteristics can't meet the needs of production, it becomes an important direction to adopt other auxiliary means for improving classification of re- mote sensing image. This study used the gray level co-occurrence matrix to extract texture features of the re- searched images, and then obtained 8 kinds of texture features. Taking advantage of the genetic algorithm of rough and intensive reduction, it proposed a set of optimal combination. New images were created and classified by uniting the optimal combination and the original images. The experiment comparison and analysis showed that the classification of spectral characteristics with the reduction of texture features could improve the accuracy and precision of remote sensing image classification.
作者 潘远 王卿
出处 《华东交通大学学报》 2016年第1期83-88,共6页 Journal of East China Jiaotong University
基金 华东交通大学铁路环境振动与噪声教育部工程研究中心资助(15TM05)
关键词 粗糙集 约简 纹理特征 分类 rough set reduction texture classification
  • 相关文献

参考文献7

二级参考文献40

  • 1赵书河,张新明,曲鸿建.多光谱遥感影像与高分辨率全色影像融合研究[J].测绘信息与工程,2004,29(5):4-5. 被引量:19
  • 2刘楠,舒宁.多光谱影像纹理特征编码的算法研究[J].武汉大学学报(信息科学版),2005,30(1):15-18. 被引量:6
  • 3李石华,王金亮,毕艳,陈姚,朱妙园,杨帅,朱佳.遥感图像分类方法研究综述[J].国土资源遥感,2005,17(2):1-6. 被引量:98
  • 4郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 5王润生.图像理解[M].长沙:国防科技大学出版社,1994..
  • 6[2]Bradley A,Jackway P,Lovell B.Classification in scale-space:applications to texture analysis[C]//Proc.Of DIC-TA-95,Australia,1995.
  • 7[4]Ohanian P P,Dubes R c.Performance Evaluation for Four Class of Texture Features[J].Pattern Recognition.1992.
  • 8Miranda F P, Carr J P. Application of the sanivariogram textural classifier (SIC) for vegetation discrimination using SIR- B data of the Guiana Shield, northwestern Brazil [J ]. Remote Sensing Reviews, 1994, 10: 155-168.
  • 9Chica - Olmo M, Arbarca - Hernandez F. Carnputing geostatistical image texture for remotely sensed data classification [J ]. Computers & Geosciences, 2000, 26(4) :373 - 383.
  • 10Berbercglu S, Lloyd C D, Atkinson P M, et al. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean [ J ]. Computers & Geosciences, 2000, 26 (4): 385- 396.

共引文献162

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部