期刊文献+

A New Generalized FB Complementarity Function for Symmetric Cone Complementarity Problems

A New Generalized FB Complementarity Function for Symmetric Cone Complementarity Problems
下载PDF
导出
摘要 We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer. We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.
机构地区 College of Science
出处 《Communications in Mathematical Research》 CSCD 2016年第1期39-46,共8页 数学研究通讯(英文版)
基金 The Specialized Research Fund(20132121110009)for the Doctoral Program of Higher Education
关键词 complementarity problem complementarity function symmetric cone generalized Fischer-Burmeister function complementarity problem, complementarity function, symmetric cone, generalized Fischer-Burmeister function
  • 相关文献

参考文献14

  • 1Yoshise A. Complementarity Problems over Symmetric Cone: A Survey of Recent Develop- ments in Several Aspects. New York: Springer-Verlag, 2012.
  • 2Gowda M S, Sznajder R. Some global uniqueness and solvability results for linear complemen- tarity problems over symmetric cones. SIAM J. Optim., 2007, 18(2): 461-481.
  • 3Huang Z, Ni T. Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl., 2009, 45: 557-579.
  • 4Pardalos P M, Maugeri A, Pardalos P M. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Dordrecht: Kluwer, 2002.
  • 5Facchinei F, Pang J S. Finite-dimensional Varational Inequalities and Complemebtarity Prob- lems. Volume I, II. Mew York: Springer-Verlag, 2003.
  • 6Gowda M S, Sznajder R, Tao J. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl., 2004, 393: 203-232.
  • 7Chen J S. On some NCP-functions based on the generalized Fischer-Burmeister function. Asia-Pac. J. Oper. Res., 2007, 24: 401-420.
  • 8Chen J S, Pan S H. A family of NCP functions and a descent method for the nonlinear complementarity problem. Comput. Optirn. Appl., 2008, 40: 389-404.
  • 9Pan S H, Kum S H, Lim Y, Chen J S. On the generalized Fischer-Burmeister merit function for the second-order cone complementarity problem. Math. Comp., 2014, 83(287): 1143 1171.
  • 10Kum S H, Lim Y. Penalized generalized Fischer-Burmeister function for SOCCP. Taiwan Residents J. Math., 2011, 15:1859 1870.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部