期刊文献+

光电沉积Co-Pi对Ta_3N_5水分解性能的影响及机理 被引量:1

Effect and Mechanism of Co-catalyst Co-Pi Impregnation by Light Assisted Electrodeposition on Solar Water Splitting Properties of Ta_3N_5 Photoanodes
下载PDF
导出
摘要 Co-Pi是一种低廉高效的氧化水产氧助催化剂,助催化剂担载方法及条件是光阳极太阳能水分解效率提升的关键因素之一。以光阳极材料Ta_3N_5为基底,针对光电沉积担载助催化剂Co-Pi开展了一系列研究,研究表明光电沉积Co-Pi过程中,照射光强的影响较小,而外加偏压和担载电量的影响很大,是Co-Pi担载的关键因素;通过阻抗谱测试定量分析了Co-Pi担载条件对Ta_3N_5/电解液界面载流子输运的影响,表明Co-Pi担载电压和电量直接影响界面光生载流子的传输,进而决定了Ta_3N_5水分解性能的高低;发现最优担载偏压对不同的Ta_3N_5均适用,而最优担载电量和光阳极的表面粗糙度存在正相关关系,要针对光阳极表面粗糙度调节助催化剂担载条件。 Co-Pi is a cheap and high efficient co-catalyst for water splitting. The impregnation method of cocatalyst is very important for water splitting property of photoanode. Therefore, in this work, for Ta3N5 photoanode,a series of studies about co-catalyst Co-Pi impregnation by light assisted electrodeposition have been developed.The results suggest that the incident light intensity during the Co-Pi impregnation process has little effect on the water splitting property, while the loading potential and the loading charge have great influence on the water splitting property of Ta3N5. In addition, the transfer of carriers on Ta3N5/electrolyte interface has been studied by electrochemical impedance spectroscopy test and simulation. The results suggest that the photo-generated carriers transfer can be efficiently regulated by controlling the loading potential and loading charge during the impregnation process to improve the water splitting property of Ta3N5. More importantly, the best loading potential of Co-Pi keeps almost unchanged for Ta3N5 with different roughness, while the best loading charge has positive correlation with the surface roughness of the phtoanode, therefore, the loading charge should be adjusted by the roughness of photoanode.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2016年第3期441-449,共9页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金青年基金(No.51502339) 江苏省基础研究计划(自然科学基金)青年基金(No.BK20140197) 中国矿业大学中央高校基本科研业务费专项资金(No.2014QNA55)资助项目
关键词 太阳能水分解 Ta3N5 Co-Pi 光电沉积 solar water splitting Ta3N5 Co-Pi light assisted electrodeposition
  • 相关文献

参考文献23

  • 1Lewis N S. Science, 2007,315(5813):798-801.
  • 2Bahadori A, Nwaoha C. Renew. Sust. Energy Rev., 2013,18: 1-5.
  • 3] Khan S U M, A1-Shahry M, Ingler W B. Science, 2002,297 (5590):2243-2245.
  • 4孙艳,闫康平.TiO_2纳米管双室光电化学池光催化制氢的研究[J].无机化学学报,2014,30(12):2740-2746. 被引量:8
  • 5Fujishima A, Honda K. Nature, 1972,238(5358):37-8.
  • 6黄益操,赵浙菲,李世雄,邸婧,郑华均.Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能[J].无机化学学报,2015,31(1):133-139. 被引量:14
  • 7Gratzel M. Nature, 2001,414(6861):338-344.
  • 8Kronawitter C X, Vayssieres L, Shen S, et al. Energy Environ. Sci., 2011,4(10):3889-3899.
  • 9Li G Q, Bai Y, Zhang W F, et al. Mater. Chem. Phys., 2013, 139(2): 1009-1013.
  • 10Li M, Luo W, Cao D, et al. Angew. Chem. Int. Ed., 2013,52 (42): 11016-11020.

二级参考文献25

  • 1赖跃坤,孙岚,左娟,林昌健.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066. 被引量:82
  • 2Fujishima A,Honda K.Nature,1972,238:37-38.
  • 3Albu S P,Ghicov A,Aldabergenova S,et a1.Adv.Mater.,2008,20:4135-4139.
  • 4Wang G,Wang H,Ling Y,et al.Nano Lett,2011,11:3026-3033.
  • 5Nada A A,Barakat M H,Hamed H A,et al.Int.J.Hydrogen Energy,2005,30:687-691.
  • 6Yi H B,Peng T Y,Ke D N,et al.Int.J.Hydrogen Energy,2008,33:672-678.
  • 7Kitano M,Takeuchi M,Matsuoka M,et al.Catal.Today,2007,120:133-138.
  • 8Palmas S,Polcaro A M,Ruiz J R,et al.Int.J.Hydrogen Energy,2010,35:6561-6570.
  • 9Ampelli C,Centi G,Passalacqua R,et al.Energy Environ.Sci.,2010,3:292-301.
  • 10Smith Y R,Sarma B,Mohanty S K,et al.Int.J.Hydrogen Energy,2013,38:2062-2069.

共引文献20

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部