期刊文献+

基于BP和GA的微晶玻璃点磨削表面硬度数值拟合 被引量:4

Numerical Fitting of Surface Hardness Based on BP and GA in Point Grinding Low Expansion Glass
下载PDF
导出
摘要 通过低膨胀微晶玻璃的高速点磨削实验,测试了加工表面硬度,分析了表面硬度随工艺参数的变化趋势.基于BP神经网络算法与单因素实验值,通过最小二乘数值拟合,建立了点磨削低膨胀微晶玻璃表面硬度与各工艺参数关系的系列化一元模型,以决定系数检验模型的精度,结果表明模型具有较高的可靠性.通过单因素一元模型分析,提出了低膨胀微晶玻璃表面硬度与工艺参数关系的多元模型.在正交试验的基础上,基于遗传算法对多元模型进行了优化建模求解.通过验证实验检验了模型的精确度,结果表明,多元模型具有较高的可靠度. The changing trend of surface hardness with process parameters was analyzed,and the surface hardness was tested by grinding lowexpansion glass in quick-point. Based on BP neural network and single factor tests in quick-point grinding,a series of one-dimensional models were built for surface hardness and process parameters by the least-squares fitting. The accuracy of the model was tested by coefficient of correlation. The results showthat the model has high accuracy.The multivariate models about surface hardness and process parameters were proposed after analyzing one-dimensional models. Based on the genetic algorithm,the multivariate numerical models were built for surface hardness according to the results of orthogonal experiments. The accuracy of multivariate model was tested by the verification experiment. The test results indicate that the model has high accuracy.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期213-217,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51275083)
关键词 表面硬度 数值拟合 BP神经网络 遗传算法 点磨削 微晶玻璃 surface hardness numerical fitting BP neural network genetic algorithm point grinding glass ceramics
  • 相关文献

参考文献11

  • 1Mia L J, Gong Y D, Duma T Y, et al. Surface roughness model in experiment of grinding engineering glasses ceramics [ J ]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 228 (12) :1563 L 1569.
  • 2Gebhardt A, Hoche T, Carl G, et al. TEM study on the origin of cabbage-shaped mica crystal aggregates in machinable glass-ceramics[J]. Acta Materialia, 1999,47 ( 17 ) : 4427 - 4434.
  • 3Bach H, Krause D. Low thermal expansion glass ceramics [M]. [S. 1. ] :Springer,2005. Mustafa E A A. Fluorophlogopite porcelain based on talc- feldspar mixture [J].Ceramics International, 2001,27 ( 1 ) : 9 -14.
  • 4Mustafa E A A. Fluorophlogopite porcelain based on talc- feldspar mixture [J]. Ceramics International, 2001,27 ( 1 ) : 9 -14.
  • 5Chen-X,Rowe W B. Analysis and simulation of the grinding process, part I: generation of the grinding wheel surface [ J ]. International Journal of Machine Tools and Manufacture, 1996,36(8) :871 - 882.
  • 6Hasstti A, Diniz A E. Correlating surface roughness and vibration on plunge cylindrical grinding of steel [ J ]. International Journal of Machine Tools and Manufacture, 2003,43(8) :855 -862.
  • 7Ma L J, Gong Y D, Chert X H. Study on surface roughness model and surface forming mechanism of ceramics in quick point grinding[J].International Journal of Machine Tools & Manufacture,2014,77:82 - 89.
  • 8尹国强,巩亚东,王超,温雪龙.新型点磨削砂轮磨削参数对表面质量的影响[J].东北大学学报(自然科学版),2014,35(2):273-276. 被引量:7
  • 9Chert X,Ma L l,Li C, et al. Experimental study and genetic algorithm-based optimization of cutting parameters in cutting engineering ceramics [ J]. International Journal of Advanced Manufacturing Technology,2014,74(5 ) :807 - 817.
  • 10卢泽生,王明海.基于遗传算法的超精密切削表面粗糙度预测模型参数辨识及切削用量优化[J].机械工程学报,2005,41(11):158-162. 被引量:16

二级参考文献7

  • 1Lennart L. Convergence analysis of parametric identification methods. IEEE transactions on Automatic Control,1978, AC-23:770~783.
  • 2Van Luttervelt C A, Childs T H C, Jawahir I S, et al. Present situation and future trends in modelling of machining operations. In: Progress Report of the CIRP working group on ‘Modelling of machining operations', Annals of the CIRP,1998, 47(2): 587~626.
  • 3Conceicao Antonio C A, Paulo Davim J. Optimal cutting conditions in turning of particulate metal matrix composites based on experiment and a genetic search model. Composites, 2002, Part A(33): 213~219.
  • 4Homaifar A, Lai S, H-Y Qi X. Constrained optimization via genetic algorithms. Simulation, 1994, 62(4): 242~254.
  • 5Joines J A, Houck C R. On the use of non-Stationary penalty functions to solve nonlinear constrained optimization problems with gas. In: Proceedings of the IEEE ICEC,1994:579~584.
  • 6Michalewicz Z, Nazhiyath G. Genocop Ⅲ: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: Proceedings of the 2nd IEEE International Conference on Evolutionary Computation, 1995, 2:647~651.
  • 7巩亚东,仇健,李晓飞,刘昌付.超高速点磨削相关机理研究[J].机械工程学报,2010,46(17):172-178. 被引量:14

共引文献21

同被引文献35

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部