期刊文献+

一种基于信任的协同过滤推荐模型 被引量:8

Collaborative filtering recommendation model based on trust
下载PDF
导出
摘要 传统的协同过滤推荐技术主要基于用户-项目评价数据集进行挖掘推荐,没有有效地利用用户通信上下文信息,从而制约其进一步提高推荐的精确性。针对传统协同过滤推荐算法存在的推荐精度不高的弊端,在协同过滤算法中融入通信上下文信息,引入了通信信任、相似信任和传递信任三个信任度,并提出了一种基于信任的协同过滤推荐模型。通过公开数据集验证测试,证明提出的推荐算法较传统的协同过滤推荐技术在推荐准确性上有较大提高。 The traditional collaborative filtering technology carries on the recommendation mainly based on user-item dataset,and cannot efficiently use the contextual information of user communication, thereby the recommended accuracy is further constrained. Aiming at the shortcomings of traditional collaborative filtering recommendation algorithm, in this paper, it fuses communication contextual information into the collaborative filtering algorithm, and introduces three types trust including communication trust, similarity trust and transmission trust, and a trust-based collaborative filtering recommendation model is also proposed. Experiments on the public dataset demonstrate that the recommendation algorithm outperforms the traditional collaborative algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第5期50-54,60,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61370050) 安徽高校自然科学研究项目(No.KJ2015A067 No.KJ2014A088) 芜湖市科技计划重点项目(No.2015cxy10) 安徽师范大学校创新基金项目(No.2015cxjj10)
关键词 协同过滤 信任 推荐 移动通信 collaborative filtering trust recommendation mobile communication
  • 相关文献

参考文献16

二级参考文献226

  • 1黄润才,周集良,孙道清,曹奇英.普适计算中上下文依赖的主动任务发现[J].计算机应用研究,2009,26(3):843-845. 被引量:1
  • 2彭泗清.信任的建立机制:关系运作与法制手段[J].社会学研究,1999(2):55-68. 被引量:380
  • 3崔亚洲,段刚.基于Web日志和商品分类的协同过滤推荐系统[J].电子科技大学学报(社科版),2006,8(3):39-42. 被引量:5
  • 4黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 5Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 6Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 7梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 8Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 10Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354

共引文献1190

同被引文献53

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部