期刊文献+

基于优化协同过滤与加权平均的群推荐方法 被引量:3

Group recommendation method based on optimized collaborative filtering and weighted average
下载PDF
导出
摘要 为面向群体用户提供推荐,提高群体用户的信息搜索效率,提出了一种新颖的基于优化协同过滤与中位数加权平均的群推荐方法,综合考虑了项目的评分相似性与类型相似性,通过集成项目相似性与用户相似性预测出群体用户对项目的评分;在集结群体用户评分时,采用基于中位数的加权平均集结策略消除个别用户评分差异过大带来的影响,综合考虑群体用户在评分过程中的作用。通过预测项目评分实验与集结用户评分实验,结果表明,用新方法得到的准确率均高于常用的传统方法,从而表明该方法是有效的。 In order to recommend items to a group of users as well as improve their information searching efficiency, a novel group recommendation method based on optimized collaborative filtering and the median-based weighted average is proposed. The method takes items' rating similarity and type similarity into consideration, integrates item similarity and user similarity to predict the values of items which users have not yet rated. Then it uses median-based weighted average strategy to aggregate the group of users' ratings, taking the effects when users rating into consideration. In the end two experiments to predict items' ratings and integrate users' ratings are given out respectively. The results show that two algorithms are better than traditional ones in terms of accuracy, indicating that the strategy proposed is valid.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第5期65-70,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.71371062) 国家重点基础研究发展计划(973)(No.2013CB329603)
关键词 群推荐 项目相似性 用户相似性 中位数 加权平均策略 group recommendation item similarity user similarity median weighted average
  • 相关文献

参考文献17

  • 1Shavitt Y,Weinsberg E,Weinsberg U.Building recommendation systems using peer-to-peer shared content[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management,2010:1457-1460.
  • 2Pera M S,Ng Y K.With a little help from my friends:generating personalized book recommendations using data extracted from a social website[C]//Proceedings of the2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology,2011:96-99.
  • 3Cantador I,Bellogín A,Vallet D.Content-based recommendation in social tagging systems[C]//Proceedings of the 4th ACM Conference on Recommender Systems,2010:237-240.
  • 4Jameson A,Smyth B.Recommendation to groups[M]//The adaptive web.Berlin/Heidelberg:Springer,2007:596-627.
  • 5Masthoff J.Group recommender systems:combining individual models[M]//Recommender systems handbook.US:Springer,2011:677-702.
  • 6Mc Carthy J F.Pocket restaurantfinder:a situated recommender system for groups[C]//Proceedings of the Workshop on Mobile Ad-Hoc Communication at the 2002ACM Conference on Human Factors in Computer Systems,Minneapolis,2002.
  • 7Crossen A,Budzik J,Hammond K J.Flytrap:intelligent group music recommendation[C]//Proceedings of the 7th International Conference on Intelligent User Interfaces,2002:184-185.
  • 8Lieberman H,Van Dyke N,Vivacqua A.Let’s browse:a collaborative browsing agent[J].Knowledge-Based Systems,1999,12(8):427-431.
  • 9O’Connor M,Cosley D,Konstan J A,et al.Poly Lens:a recommender system for groups of users[C]//ECSCW2001.Netherlands:Springer,2001:199-218.
  • 10SalamóM,Mc Carthy K,Smyth B.Generating recommendations for consensus negotiation in group personalization services[J].Personal and Ubiquitous Computing,2012,16(5):597-610.

二级参考文献10

  • 1J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 2B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 3A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 4B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 5B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 6J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 7C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 8B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446
  • 9赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:556

共引文献101

同被引文献25

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部