期刊文献+

管道非连续流体层流、边界层表达式及减阻分析 被引量:2

Analysis on expression of laminar flow and boundary layer and drag reducing in PNF
原文传递
导出
摘要 为求得管道非连续流体(Pipe Noncontinuous Fluid,PNF)的层流卡门动量积分和边界层厚度表达式,参考平板层流卡门动量积分关系,结合工程实践,对PNF的层流边界层卡门动量积分关系式进行了分析。引入不同边界条件,重新分析了PNF层流边界层内流速分布表达式;采用近似解法求解PNF壁面切应力,避免了解四次方程求PNF壁面切应力精确解;针对PNF壁面切应力误差公式,进行分析后并结合工程算例数据优选近似解系数,获得PNF壁面切应力近似解,进而求得该工程中的PNF边界层厚度表达式。通过进一步分析PNF雷诺数对摩擦阻力因数的影响可知,在层流的情况下,随着PNF雷诺数的增加,摩擦阻力减小,从而达到减阻的效果。 In order to obtain Carmen momentum integral relationship formulas of laminar flow and the expression of thickness of boundary layer in PNF(pipe non-continuous fluid), in combination with Carmen momentum integral relationship formulas of flat plate laminar flow and engineering practice, Carmen momentum integral relationship formulas of laminar flow and boundary layer in PNF was analyzed. First, various boundary conditions were introduced to reanalyze the flow distribution expression of laminar flow and boundary layer in PNF. The approximate solution was applied to deduce the wall shear stress(WSS) in PNF, so as to avoid solving a quartic equation for exact solution of WSS in PNF. After analyzing the error formulas of WSS in PNF, the data of a certain engineering project were applied to optimize the coefficient of approximate solution, so as to obtain the approximate solution of WSS in PNF and further achieve the expression of thickness of PNF boundary layer in the project. In addition, the influence of Reynolds number of PNF on friction resistance factor was analyzed. It was found that with the increase in Reynolds number of PNF, the flow drag of the laminar flow reduced, and the effects of drag reducing was achieved.
出处 《矿山机械》 2016年第3期68-73,共6页 Mining & Processing Equipment
基金 浙江省自然科学资助基金项目(Y1100148)
关键词 PNF 层流 边界层 壁面切应力(WSS) 近似解 PNF(pipe non-continuous fluid) laminar flow boundary layer WSS(wall shear stress) approximate solution
  • 相关文献

参考文献20

  • 1SCHUBAUER G B, SKRAMSTAD H F. Laminar boundary- layer oscillations and stability of laminar flow [J]. Journal of the Aeronautical Sciences, 1947, 14(2): 69-78.
  • 2江体乾.关于非牛顿型流体边界层的研究[J].物理学报,1962,18(4):224-226.
  • 3陈仕伟.非牛顿流体边界层减阻流动研究[J].四川大学学报(工程科学版),2000,32(5):21-24. 被引量:1
  • 4刘辉志,冯健武,王雷,洪钟祥.大气边界层物理研究进展[J].大气科学,2013,27(2):467-476. 被引量:38
  • 5CHEVALIER T, RODTS S, CHATEAU X, et al. Boundary layer (shear-band) in frustrated viscoplastic flows[J]. EPL, 2013, 102: 48102.
  • 6唐树江,李明军.平板层流边界层速度分布的一种最佳近似解析解[J].湘潭大学自然科学学报,2013,35(1):18-20. 被引量:3
  • 7Chunpei Cai.Near continuum boundary layer flows at a flat plate[J].Theoretical & Applied Mechanics Letters,2015,5(3):134-139. 被引量:1
  • 8DADFAR R, FABBIANE N, BAGHERI S, et al. Centralised versus decentralised active control of boundary layer instabilities [J]. Flow Turbulence & Combustion, 2014, 93(4) : 537-.553.
  • 9BREWSTER M Q. Mixed boundary layer skin friction and heat transfer with abrupt transition [J]. Journal of Heat Transfer, 2014, 136(11): 114501.
  • 10MURTHY P V S N, RAMREDDY C, CHAMKHA A J, et al. Significance of viscous dissipation and chemical reaction on convective transport in a boundary layer stagnation point flow past a stretching/shrinking sheet in a nanofluid [J]. Journal of Nanofluids, 2015, 4: 214-222.

二级参考文献60

共引文献45

同被引文献24

  • 1陶松垒,李未材,陶钧炳,周良云.一种新型的清淤输泥设备[J].水利水电技术,2004,35(5):108-110. 被引量:2
  • 2樊洪海,刘希圣.宾汉流体在钻井同心环空内轴向层流核及压降计算[J].石油大学学报(自然科学版),1993,17(2):27-32. 被引量:5
  • 3陶松垒.气力输送软粘物料的研究与应用[J].建设机械技术与管理,1996,9(5):18-23. 被引量:5
  • 4Chilton R A, Stainsby R. Pressure loss equations turbulent non-Newtonian pipe flow[J]. Journal Engineering, 1998, 124(5): 522-529.
  • 5for laminar and of Hydraulic Grozdek M , Khodabandeh R , Lundqvist P. Experimental investigation of ice slurry flow pressure drop in horizontal tubes[J]. Experimental Thermal and Fluid Science, 2009, 33(2) 357-370.
  • 6Monteiro A C S, Bansal P K. Pressure drop characteristics and rheological modeling of ice slurry flow in pipes[J]. International JournalofRefrigeration, 2010, 33(8): 1523-1532.
  • 7Mika L. Pressure loss coefficients of ice slurry in horizontally installed flow dividers[J]. Experimental Thermal & Fluid Science 2013, 45(2): 249-258.
  • 8Bechtel T B. Laminar pipeline flow of wastewater sludge computational fluid dynamics approach[J]. American Society of Civil Engineers, 2014, 129(2): 153-158.
  • 9Hirt C W, Nichols B D. Volume of fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics 1981,39(1):201-225.
  • 10Yamaguchi H. Engineering fluid mechanics[M]. Berlin: Springer 2008.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部