期刊文献+

LiCl-KCl-CeCl_3熔盐结构与热力学的分子动力学模拟 被引量:4

Molecular Dynamics Simulation on the Structure and Thermodynamics of Molten LiCl-KCl-CeCl_3
下载PDF
导出
摘要 采用分子动力学模拟的方法,研究了LiCl-KCl-CeCl_3熔盐中CeCl_3的结构性质和热力学,获得了LiClKCl-CeCl_3熔盐中密度与组成、密度与温度的关系数据;径向分布函数g_(Ce-Cl)(r)的第一个峰位置为0.259nm,Ce^(3+)对应的第一个配位数约为6.9;混合熔盐中计算数据与纯熔盐中数据的差异可以解释为混合熔盐中Ce^(3+)和Cl^-的相互作用比纯的CeCl_3更强;LiCl-KCl熔盐中Ce^(3+)的自扩散活化能为22.5 k J?mol^(-1),从活化能的本质来说,Ce^(3+)自扩散所需要克服的能垒要略低于U^(3+)(25.8 k J?mol^(-1))。当Ce^(3+)的摩尔分数从0.005增加到0.05时,其指前因子从31.9×10^(-5)cm^2?s^(-1)减少到21.8×10^(-5)cm^2?s^(-1);随着Ce^(3+)摩尔分数从0.005增长到0.05,单位体积内(忽略总体积的变化)Ce^(3+)的增加意味着其扩散阻力增加,而自扩散的能力降低,导致了指前因子的减小。 The structure and thermodynamics of CeCl_3 in molten LiCl-KCl-CeCl_3 mixtures were studied by molecular dynamics simulation. The relationship formulas of temperature and density, and composition and density were obtained. The first peak for the g_(Ce-Cl)(r) radial distribution function was located at 0.259 nm and the corresponding first coordination number of Ce^3+was ~6.9. This inconsistency between molecular dynamics and experimental data could be attributed to the fact that our values were obtained for molten LiCl- KCl- CeCl_3 mixtures, in which the interaction between Ce^3+and Cl^- was more powerful than that in pure molten CeCl_3.Regarding self-diffusion coefficients, the activation energy of Ce^3+was 22.5 k J·mol^-1, which is smaller than that of U^3+(25.8 k J·mol^-1). Furthermore, the pre-exponential factors for Ce^3+decreased from 31.9 ×10^-5 to 21.8 ×10^-5cm^2·s^-1 as the molar fraction of Ce^3+increased from 0.005 to 0.05. This means that in the unit volume(ignoring the change of total volume), the diffusion resistance of Ce^3+increased, and the self-diffusion ability decreased, which resulted in a decrease of pre-exponential factors.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第3期647-655,共9页 Acta Physico-Chimica Sinica
基金 国家自然科学基金重大研究计划-集成项目(91426302) 国家自然科学基金(21301163)资助~~
关键词 Li Cl-KCl-CeCl3 结构 热力学 分子动力学 扩散系数 Li Cl-KCl-CeCl3 Structure Thermodynamics Molecular dynamics Diffusion coefficient
  • 相关文献

参考文献31

  • 1Fukasawa,K.; Uehara,A.; Nagai,T.; Sato,N.; Fujii,T.; Yamana,H.J.Nucl.Mater.2012,424(1-3),17.doi: 10.1016/j.jnucmat.2012.01.009.
  • 2Salanne,M.; Simon,C.; Turq,P.; Madden,P.A.J.Phys.Chem.B 2008,112(4),1177.doi: 10.1021/jp075299n.
  • 3Ghosh,S.; Reddy,B.P.; Nagarajan,K.; Kumar,K.C.H.Calphad 2014,45,11.doi: 10.1016/j.calphad.2013.11.001.
  • 4Roy,J.J.; Grantham,L.F.; Grimmett,D.L.; Fusselman,S.P.; Krueger,C.L.; Storvick,T.S.; Inoue,T.; Sakamura,Y.; Takahashi,N.J.Electrochem.Soc.1996,143(8),2487.doi: 10.1149/1.1837035.
  • 5Sangster,M.J.L.; Dixon,M.Adv.Phys.1976,25(3),247.doi: 10.1080/00018737600101392.
  • 6Okamoto,Y.; Madden,P.A.; Minato,K.J.Nucl.Mater.2005,344(1-3),109.doi: 10.1016/j.jnucmat.2005.04.026.
  • 7Okamoto,Y.; Kobayashi,F.; Ogawa,T.J.Alloy.Compd.1998,271-273,355.doi: 10.1016/S0925-8388[98)00087-5.
  • 8Okamoto,Y.; Madden,P.A.J.Phys.Chem.Solids 2005,66(2-4),448.doi: 10.1016/j.jpcs.2004.06.038.
  • 9Okamoto,Y.; Hayashi,H.; Ogawa,T.J.Nucl.Mater.1997,247,86.doi: 10.1016/S0022-3115[97)00094-9.
  • 10Abramo,M.C.; Caccamo,C.Journal of Physics: Condensed Matter 1994,6(24),4405.doi: 10.1088/0953-8984/6/24/003.

同被引文献24

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部