期刊文献+

金属-酶协同催化动态动力学拆分反应研究进展 被引量:3

Recent progress in dynamic kinetic resolution by metal catalysis cooperate with enzymes
下载PDF
导出
摘要 金属催化和酶催化在很长时间被认为是两个不同的领域,动态动力学拆分反应是金属-酶协同催化的成功应用。如何有效地协同金属催化的消旋化与酶催化的动力学拆分是其中的关键问题。本文对金属-酶协同催化动态动力学拆分醇和胺类化合物进行了综述,重点介绍了动态动力学拆分中常用的金属催化剂,各种金属与酶的协同,并对其前景进行了展望,指出提高酶在反应体系中的稳定性是未来的发展方向。 Enzyme and metal catalysis used to be considered as unconnected just like "two sides of a medal". Chemoenzymatic dynamic kinetic resolution is an important application of metal complexes in cooperative catalysis with enzymes. The key point is how to cooperate racemization by metal and to conduct kinetic resolution by enzymes effectively. Racemization of a substrate with a metal complexes combined with a stereoselective transformation of the substrate catalyzed by an enzyme by kinetic resolutions dynamic was reviewed. The metal catalysts used in dynamic kinetic resolution and the coordination of various metals and enzymes were mainly introduced. In the final part of the perspective,improving the stability of enzyme in the reaction system is thought to be the future research direction.
出处 《化工进展》 EI CAS CSCD 北大核心 2016年第3期807-814,共8页 Chemical Industry and Engineering Progress
基金 中国博士后科学基金(2014M551745) 浙江省自然科学基金(LY15B060008)项目
关键词 生物催化 动力学 化学反应 手性 biocatalysis kinetics chemical reaction chirality
  • 相关文献

参考文献47

  • 1VERHO O, BA.CKVALL J E. Chemoenzymatic dynamic kinetic resolution: a powerful tool for the preparation of enantiomerically pure alcohols and amines[J]. Journal of the American Chemical Society, 2015, 137 (12): 3996-4009.
  • 2ALLEN J V, WILLIAMS J M. Dynamic kinetic resolution with enzyme and palladium combinations[J]. Tetrahedron Letters, 1996, 37: 1859-1862.
  • 3DINH P M, HOWARTH J A, HUDNOTT A R, et al. Catalytic racemisation of alcohols: applications to enzymatic resolution reactions[J].TelrahedronLetters, 1996, 37: 7623-7626.
  • 4LARSSON A L E, PERSSON B A, BACKVALL J E. Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol[J]. Angewandte Chemie International Edition, 1997, 36: 1211-1212.
  • 5KAZLAUSKAS R J, WEISSFLOCHAN E, RAPPAPORTAT, et al. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from pseudomonas cepacia, and lipase from Candida rugose[J]. Journal of Organic Chemistry, 1991, 56: 2656-2665.
  • 6CONLEY B L, PENN1NGTON-BOGGIO M K, BOZ E, et al. Discovery applications, and catalytic mechanisms of Shvo's catalyst[J]. ChemicalReviews, 2010, 110: 2294-2312.
  • 7KOH J H, JEONG H M, PARK J. Efficient catalytic racemization of secondary alcohols[J]. Tetrahedron Letters, 1998, 39: 5545-5548.
  • 8KOH J H, JUNG H M, KIM M J, et al. Enzymatic resolution of secondary alcohols coupled with ruthenium-catalyzed racemization without hydrogen mediator[J].Tetrahedron Letters, 1999, 40: 6281-6284.
  • 9AKAI S, TANIMOTO K, KITA Y. Lipase-catalyzed domino dynamic kinetic resolution of racemic 3-vinylcyclohex-2-en-l-ols/Intramolecular diels-alder reaction., one-pot synthesis of optically active polysubstituted decalin[J]. Angewandte Chemie International Edition, 2004, 43: 1407-1410.
  • 10CHOI J H, KIM Y H, NAM S H, et aL Aminocyclopentadienyl ruthenium chloride: catalytic racemization and dynamic kinetic resolution of alcohols at ambient temperature[J]. Angewandte Chemic International Edition, 2002, 41.. 2373-2376.

同被引文献10

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部