期刊文献+

一种基于HBase的智能电网时序大数据处理方法 被引量:17

Approach to Process Smart Grid Time-Serial Big Data Based on HBase
下载PDF
导出
摘要 随着物联网关键技术与理论的发展,物联网应用受到了越来越多的关注。智能电网是一类典型的物联网应用,遍布全网的传感器收集及产生了大量反映关键设备运行状态的时序数据。如何利用时序数据确保智能电网的安全以及稳定运行是当前的研究热点之一。针对智能电网时序数据设备多、数据规模大、产生速度快等特点,提出了一种基于HBase的海量时序数据存储处理方法,着重介绍了如何利用策略驱动技术实现时序数据的灵活存储与处理。通过构建HBase集群,验证了该方法的有效性。 With the development of critical theories and technologies in Internet of things (IOT), more and more attentions have been focused on the IOT applications. Smart Grid is one of the typical lOT applications on which a huge number of sensors have been deployed to gather and generate time-serial data to make sense of the running states of the key devices. How to apply these data to make smart grid running secure and stable is a hot research topic. By considering the fact that smart grid is characterized by a huge number of devices, a huge amount of data and the high speed data generating, an approach was proposed to store and process big time-serial data in smart grid based on the HBase. The emphasis is a policy-driven method to make the time-serial data organized in HBase on demand. The HBase cluster was deployed to verify effectiveness of the approach.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第3期559-568,共10页 Journal of System Simulation
基金 国家863计划(2011AA05A116) 国家电网科技项目(62KJ130501B1003620120)
关键词 大数据 物联网 HBASE 时序数据 性能优化 Big data Internet of things HBase Time-serial data performance optimization
  • 相关文献

参考文献21

二级参考文献309

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献1716

同被引文献159

引证文献17

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部