期刊文献+

用于再入弹道目标跟踪的Sigma点卡尔曼滤波器(英文)

Sigma Point Kalman Filters for Re-entry Ballistic Target Tracking
下载PDF
导出
摘要 提出一种新的Sigma点卡尔曼滤波器,求积分卡尔曼滤波器(Quadrature Kalman Filter,QKF),用于再入弹道目标的跟踪问题。新滤波器通过一系列参数化高斯密度的高斯-赫米特求积分点,使用统计线性回归的方法来线性化非线性函数的。仿真实验比较了这个新的Sigma点滤波器和扩展卡尔曼滤波器(Extended Kalman Filter,EKF),均差滤波器(Divided Difference Filter,DDF),无味滤波器(Uncented Kalman Filter,UKF)。结果表明所有Sigma点滤波器的估计误差都低于EKF的估计误差。QKF的估计误差低于UKF的估计误差,其滤波可靠性也与UKF很接近。QKF的计算复杂性比UKF稍高,新的Sigma点滤波器是一种有效算法。 A new kind of sigma-point Kalman filter was proposed, quadrature Kalman filter(QKF), for the purpose of re-entry ballistic target tracking applications. The new filter linearized the nonlinear functions using statistical linear regression method through a set of Gaussian-Hermite quadrature points that parameterized the Gaussian density. The simulation experiment compared this new sigma point filter with EKF, DDF and UKF. Simulation results show that the estimation errors of all sigma point filters are all lower than that of EKF. The estimation error of QKF is lower than that of UKF, and its filtering credibility is almost same as that of UKF. The calculation complexity of QKF is a litter higher than that of UKF. The new sigma-point filter is an effective algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第3期640-647,653,共9页 Journal of System Simulation
基金 Shaanxi Province Natural Science Fund(2015JQ6242) Central Colleges Fundamental Research Funds(310832151096,310832151092)
关键词 Sigma点滤波 卡尔曼滤波 求积分卡尔曼滤波 跟踪 sigma point Kalman filters quadrature Kalman filter tracking
  • 相关文献

参考文献9

  • 1Haitao Zhang, Yujiao Zhao. The Performance Comparison and Analysis of Extended Kalman Filters for GPS/DR Navigation [J]. International Journal for Light and Electron Optics (S0030-4026), 2011, 122(9): 777-781.
  • 2Mohammad Taghi Sabet, Pouria Sarhadi, Mostafa Zafini. Extended and Unscented Kalman Filters for Parameter Estimation of an Autonomous Underwater Vehicle [J]. Ocean Engineering (S0029-8018), 2014, 91 (11): 329-339.
  • 3T S Schei. A Finite-Difference Method for Linearization in Nonlinear Estimation Algorithms [J]. Automatica (S0005-1098), 1997, 33(11): 2053-2058.
  • 4M Norgaard, N K Poulsen, O Ravn. Advances in Derivative-Free State Estimation for Nonlinear Systems [R]// Tech. Pep. IMM-REP-1998-15. Denmark: Tech. Univ. of Denmark, 2000.
  • 5S J Julier, J K Uhlmann, H F Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators [J]. IEEE Trans. Autom. Control (S1545-5955), 2000, 45(3): 477-482.
  • 6Haitao Zhang, Gang Dai, Junxin Sun, et al, Unscented Kalman Filter and its Nonlinear Application for Tracking a Moving Target [J]. International Journal for Light and Electron Optics (S0030-4026), 2013, 124(20): 4468-4471.
  • 7Farina A, Ristic B, Benvenuti D. Tracking a ballistic target: comparison of several nonlinear filters [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2002, 38(3): 854-867.
  • 8Arasaratnam I, Haykin S, Elliott R J. Discrete-Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature [J]. Proceedings of the IEEE (S0018-9219), 2007, 95(5): 953-977.
  • 9Wu C L, Hart C Z. The Qudrature Kalman Particle Fitler [J]. Journal of Systems Engineering and Electronics (S1004-4132), 2010, 21(2): 175-179.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部