期刊文献+

基于空间分布特征的图像显著性检测 被引量:1

Image SaliencyDetection Based on Spatial Distribution Feature
下载PDF
导出
摘要 论文提出了一种基于图像显著性区域的空间分布统计特征的全分辨率显著性检测方法。该方法根据图像尺寸按比例提取出图像四周的像素,组成一个新的背景图像,通过对背景图像进行分析处理,得出背景图像块的颜色空间特征,将其运用于获得整幅图像的全分辨率显著性。此外,通过简单的阈值分割方法得到图像中的显著目标。实验结果表明,论文提出的方法容易实现,能够快速、清晰而准确地提取出图像中的显著性目标。 A method of salient region detection that outputs full resolution saliency maps is proposed which is based on spatial distribution feature of image salient region.Firstly,according to the image size,some peripheral pixels of the image are copied to build a new image named background image,then the background image is analyzed and its features of color space are gotten,lastly,its features are used to produce a full resolution saliency map of the entry image.Moreover,the salient region is obtain by apply a sample method of threshold segmentation on the saliency map.The experiment results show that our model is simple to implement,can extract salient objects in images fast and exactly.
出处 《计算机与数字工程》 2016年第2期321-325,共5页 Computer & Digital Engineering
基金 面向大尺度场景的高融合度增强现实技术(编号:2013AA013802) 民航科技项目(编号:20150228)资助
关键词 空间分布特征 显著性检测 背景图像 全分辨率 spatial distribution feature saliency detection background image full resolution
  • 相关文献

参考文献20

  • 1Jian M W, Dong J Y, Ma J. Image retrieval using wavelet-based salient regions[J]. The Imaging Science Journal, 2011,59(4) :219-231.
  • 2R. Achanta, S. Hemami, F. Estrada, et al. Frequen- cy-tuned salient region detection. In CVPR, pages 1597-1694,2009 : 409-414.
  • 3华顺刚,陈国鹏,时树胜.基于相似性判据的图像尺寸调整算法[J].计算机工程,2012,38(4):191-193. 被引量:2
  • 4Gupta R, Chaudury S. A scheme for attentional video compression[J]. Pattern Recognition and Machine In- telligence, 2011,6744.. 458-465.
  • 5Kim W, Kim (2. A novel image importance model for content-aware image resizing[C]//Proceedings of the 18th IEEE International Conference on Image. Brus- sels, Belgium. IEEE, 2011 2469-2472.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1998,20(11) .. 1254-1259.
  • 7Zhang X L, Li Z P, Zhou T G, et al. Neural activities in V1 create a bottom-up saliency map[J]. Neuron, 2012,73(1) .. 183-192.
  • 8C. Koch, S. Ullman. Shifts in selective visual atten- tion: towards the underlying neural circuitry. Human Neurhiology, 4: 219-227,1985 : 409-410.
  • 9Hansen L K, Karadogan S, Marchegiani L. What to measure next to improve down task driven {eature decision making? On top- saliency [C]//2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain. Paris, France: IEEE, 2011:86-87.
  • 10Baluch F, Itti L. Mechanisms of top-down attention [J]. Trends in Neurosciences, 2011,34(4) :210-224.

二级参考文献18

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2葛涛,冯松鹤.基于层次和动态阈值的图像显著区域检测方法[J].计算机应用,2006,26(11):2721-2723. 被引量:7
  • 3ITTI L,KOUCH C.Computational modeling of visual attention[J].Nature Reviews Neuroscience,2001,2(3):194-230.
  • 4ITTI L,KOUCH C.Feature combination strategies for saliency-based visual attention systems[J].Journal of Electronic Imaging,2001,10(1):161-169.
  • 5HOU Xiaodi,ZHANG Liqing.Saliency detection:a spectral residual approach[C]// IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:IEEE,2007:1-8.
  • 6MA Yufei,ZHANG Hongjiang.Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the 11th ACM International Conference on Multimedia.New York:ACM,2003:374-381.
  • 7SUN Yaoru,ROBERT F.Object-based visual attention for computer vision[J].Artificial Intelligence,2003,146(1):77-123.
  • 8WOONG J W,SANG W B,MINHO L.Real time implementation of a selective attention model for the intelligent robot with autonomous mental development[C]//Proceedings of the IEEE Symposium on Industrial Electronics.Minneapolis,USA:2005:1309-1314.
  • 9WOONG J W,SANG W B,JAEKYOUNG M.Biologically motivated face selective attention system[C]// International Joint Conference on Neural Networks.Minneapolis,USA,2006:4292-4297.
  • 10HU Yiqun,XIE Xing,MA Weiying.Salient region detection using weighted feature maps based on the human visual attention model[C]// Advances in Multimedia Information Processing.Heidelberg:Springer,2004:993-1000.

共引文献12

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部