摘要
论文介绍的是基于边缘检测与特征点提取的位图矢量化方法。先将位图进行RGB—HSI变换,增强图像对比度并进行边缘降噪、平滑处理,而后对图片进行阈值化处理。运用Canny算子对阈值化图像进行边缘检测,并藉此提取边缘轮廓。获得边缘轮廓后对其进行特征点求取。得到特征点集合。存储集合并在此基础上借助Matlab编写曲线处理函数,使用最小二乘法对曲线进行局部试拟合,比对SSE,找出最小值并记住当前参数,确定拟合函数。通过对所有局部曲线自动拟合技术,生成一组多项式方程,实现位图的矢将其量化。最后得出一组图像曲线。论文借助边缘检测的技术实现了位图的矢量化。
A bitmap vectorization methods that based on edge detection and feature point extraction is introduced in this article.Firstly,RGB-HSI transform is used to enhance the image contrast of the bitmap,to reduce the edge's noise and smooth the edge,then applying the threshold to process the image.Using Canny operator to detect the edge of the threshold image,and to extract the edge contour.Striking the characteristic points of the edge contour,thus getting feature points set.Combining Matlab to write the curve processing function on the basis of the set storage,using the least square method to fit the curve and to compare the SSE.Then finding the minimum value and remembering the current parameters,and determining the fitting function.Through automatic fitting technique to assemble all local curves,thus generating a set of polynomial equations,then realizing the vector of bitmap and quantizing them.Finally,a set of image curves are obtained.In this paper,edge detection technology is used to achieve the vectorization of a bitmap.
出处
《计算机与数字工程》
2016年第2期331-336,共6页
Computer & Digital Engineering
基金
昆明理工大学校级项目资助
关键词
边缘检测
曲线自动拟合
矢量化
特征点提取
Matlab
多项式拟合
最小二乘法
edge detection
automatic fitting curve
vectorization
extracte of feature point
Matlab
polynomial fitting
the least square method