摘要
针对网络Euler-Lagrange系统的有限时间协调一致性问题,考虑控制力矩有界和速度信息不可测的实际情况。基于有限时间控制技术,利用双曲正切函数,设计出了网络Euler-Lagrange系统分布式有限时间一致性控制算法。利用代数图论、Lyapunov稳定性理论和齐次性理论,证明了设计出的控制算法能够使得所有智能体的位置和速度在有限时间内达到一致,并且满足控制力矩有界的条件。最后数值仿真结果表明在控制力矩有界和速度信息不可获取的情况下,所设计出控制算法的有效性和可行性。
This article focuses on the finite-time coordinated consensus problem for networked Euler-Lagrange systems with control torque constraints and the velocity is not available for feedback. Based on the finite-time control technology,by using hyperbolic tangent function,a velocity-free distributed finite-time consensus algorithm is designed for velocity is not measurable and the control inputs are regarded as a priori bounded. Rigorous proof shows that the positions and velocities of all agents can be achieved consensus in finite-time and the control scheme satisfies the control torque constraints requirement with the algebraic graph theory,homogeneous method and Lyapunov stability theory. Finally,numerical simulation validates the effectiveness and feasibility of the proposed method with control torque constraints and without velocity measurements.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2016年第2期157-161,167,共6页
Journal of Harbin Engineering University
基金
国家科技重大专项资助项目(20112X05027)