期刊文献+

输入受限的网络Euler-Lagrange系统有限时间一致性

Finite-time consensus control for networked Euler-Lagrange systems with input saturations
下载PDF
导出
摘要 针对网络Euler-Lagrange系统的有限时间协调一致性问题,考虑控制力矩有界和速度信息不可测的实际情况。基于有限时间控制技术,利用双曲正切函数,设计出了网络Euler-Lagrange系统分布式有限时间一致性控制算法。利用代数图论、Lyapunov稳定性理论和齐次性理论,证明了设计出的控制算法能够使得所有智能体的位置和速度在有限时间内达到一致,并且满足控制力矩有界的条件。最后数值仿真结果表明在控制力矩有界和速度信息不可获取的情况下,所设计出控制算法的有效性和可行性。 This article focuses on the finite-time coordinated consensus problem for networked Euler-Lagrange systems with control torque constraints and the velocity is not available for feedback. Based on the finite-time control technology,by using hyperbolic tangent function,a velocity-free distributed finite-time consensus algorithm is designed for velocity is not measurable and the control inputs are regarded as a priori bounded. Rigorous proof shows that the positions and velocities of all agents can be achieved consensus in finite-time and the control scheme satisfies the control torque constraints requirement with the algebraic graph theory,homogeneous method and Lyapunov stability theory. Finally,numerical simulation validates the effectiveness and feasibility of the proposed method with control torque constraints and without velocity measurements.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第2期157-161,167,共6页 Journal of Harbin Engineering University
基金 国家科技重大专项资助项目(20112X05027)
关键词 Euler-Lagrange系统 有限时间 速度信息不可测 一致性算法 Euler-Lagrange systems finite-time without velocity measurements consensus algorithm
  • 相关文献

参考文献21

  • 1LI Zhijun, LI Jianxun, KANG Yu. Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments[J]. Automatica, 2010, 46(12): 2028-2034.
  • 2VALENTIN F, TOBIAS M, ALEXANDER H, et al. Dynamic modeling of constant curvature continuum robots using the Euler-Lagrange formalism[C]//IEEE International Conference on Intelligent Robots and Systems, USA, Chicago, 2014: 2428-2433.
  • 3JIN Maolin, LEE J, CHOI C. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control[J]. IEEE transactions on industrial electronics, 2009, 56(9): 3593-3601.
  • 4HONG Yiguang, XU Yangsheng, HUANG Jie. Finite-time control for robot manipulators[J]. Systems and control letters, 2002, 46(4): 243-253.
  • 5WU Xiaofeng, WU Zewei, CAI Jianping. Recovery control for the parent-child autonomous underwater vehicles via a master-slave synchronization scheme[C]//The 33rd Chinese Control Conference. Nanjing, China, 2014: 1317-1320.
  • 6CHEN Weichen, JEN S K, JING F T. Modeling and simulation of an AUV simulator with guidance system[J]. IEEE journal of oceanic engineering, 2013, 38(2): 211-225.
  • 7CORINA B, MATTHEW W, DUNNUGAN Y P. Dynamic coupling and control issues for a lightweight underwater vehicle manipulator system[C]//IEEE The 2014 Oceans-St. John’s, St. John’s, NL, 2014: 1-6.
  • 8EVEV B, KRISTIN Y. P. Formation control of 6-DOF Euler-Lagrange systems with restricted inter-vehicle communication[C]//IEEE Conference on Decision and Control Manchester Grand Hyatt Hotel, San Diego, CA, USA, 2006: 5718-5723.
  • 9JONGHOON P, WANKYUN C. Nonlinear H∞ optimal PID control of autonomous underwater vehicles[C]//IEEE International Symposium on Underwater Technology, Tokyo, Japan, 2000: 193-198.
  • 10LIU Yuan, MIN Haibo, WANG Shicheng. Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay[J]. Systems and control letters, 2014, 64(2): 119-126.

二级参考文献29

  • 1CAO Y C, YU W W, REN W, et al. An overview of recent progress in the study of distributed multi-agent coordination [J]. IEEE Trans- actions on Industrial Inforrnatics, 2012, 99:1 - 20.
  • 2OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and co- operation in networked multi-agent systems [J]. Proceedings of the IEEE, 2007, 95(1): 215 - 233.
  • 3MIN H B, WANG S C, SUN F C, et al Decentralized adaptive atti- tude synchronization of spacecraft formation [J]. Systems & Control Letters, 2012, 61(1): 238 - 246.
  • 4JIN E, JIANG X, SUN Z. Robust decentralized attitude coordination control of spacecraft formation [J]. Systems & Control Letters, 2008, 57(5): 567 - 577.
  • 5CHUNG S J, AHSUN J J, SLOTINE J J. Application of synchroniza- tion to formation flying spacecraft: Lagrangian approach [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 512 - 526.
  • 6MIN H B, WANG S C, SUN F C, et al. Distributed six degree-of- freedom spacecraft formation control with possible switching topol- ogy [J]. lET Control Theory & Applications, 2011, 5(9): 1120- 1130.
  • 7WANG P K, HADAEGH F Y, LAU K. Synchronized formation rota- tion and attitude control of multiple free-flying spacecraft [J]. Journal of Guidance, Control and Dynamic, 1999, 22(1): 28- 35.
  • 8REN W. Distributed attitude alignment in spacecraft formation fly- ing [J]. International Journal of Adaptive Control and Signal Pro- cessing, 2007, 21(2/3): 95 - 113.
  • 9CHUNG S J, SLOTINE J. Cooperative robot control and concurrent synchronization of lagrangian systems [J]. Journal oflEEE Transac- tions on Robotics, 2009, 25(3): 686 - 700.
  • 10REN W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems [J]. International Journal of Control, 2009, 82(11): 2137 - 2149.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部