期刊文献+

K-power系统在Grassmann流形上的单侧模型降阶方法 被引量:1

ONE-SIDE MODEL REDUCTION OF K-POWER SYSTEMS ON THE GRASSMANN MANIFOLD
原文传递
导出
摘要 K-power系统作为一类比较特殊的双线性系统,可以由一系列阶数相对较小的子系统构成,这使得K-power系统具有特殊的结构.K-power系统在Grassmann流形上的模型降阶方法将误差系统的H_2范数看作是定义在Grassmann流形上的代价函数,然后,沿测地线执行线性搜索寻找使得代价函数最小的变换矩阵.为了保持系统降阶前后结构的一致性,算法以K-power系统中各个子系统的变换矩阵为对角线元素构成双线性系统的变换矩阵.此外,算法有效地利用了K-power系统的结构特性,使得该算法在对K-power系统进行降阶时较一般的双线性系统的模型降阶方法有更少的计算量. The K-power system is regarded as a kind of special bilinear systems, which can be made up of some lower order subsystems. This allows the K-power system to have the special structure. The /-/2 norm of the error system is seen as the cost function defined on the Grassmann manifold. Fhrther, we operate the linear search along the negative gradient to seek the transformation matrix to make the cost function the smallest. In order to retain the structure of the reduced system in accordance with that of the original system, the transformation matrix of the bilinear system is the block diagonal matrix, whose diagonal blocks consist of the transformation matrices of the subsystems in the K-power system in the corresponding algorithm. In addition, By making full use of the structure of the K- power system, the algorithm costs less computational quantity than the other bilinear model reduction methods for reducing the order of the K-power system.
出处 《数值计算与计算机应用》 CSCD 2016年第1期41-56,共16页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11371287)
关键词 模型降阶 K—power系统 H2最优 GRASSMANN流形 代价函数. model order reduction K-power system H2 optimality Grassmann mani- fold cost function.
  • 相关文献

参考文献21

  • 1Amsallem D, Farhat C. An interpolation method for adapting reduced-order methods and appli- cation to aeroelasticity[J]. AIAA Journal, 2008, 46: 1803-1813.
  • 2Jiang Y L, Chen H B. Time domain model order reduction of general orthogonal polynomials for linear input-output systems[J]. IEEE Transactions on Automatic Control, 2012, 57: 330-343.
  • 3Antoulas A C. Approximation of Large-Scale Dynamical Systems[M]. SIAM, Philadelphia, PA, 2005.
  • 4Gugercin S, Antoulas A C, Beattie C. /-/2 model reduction for large-scale linear dynamical sys- tem[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30: 209-638.
  • 5陈春岳,蒋耀林.时域投影模型降阶方法的小样本误差估计[J].数值计算与计算机应用,2012,33(4):283-292. 被引量:1
  • 6Senturia S D. Microsystem Design[M]. Kluwer Academic Publishers, Boston, 2001.
  • 7Freund R W, Feldman P. Small-signal circuit analysis and sensitivity computations with the PVL algorithm[J]. IEEE Transactions on Circuits Systems II: Analog and Digital Signal Processing, 1996, 43: 577-585.
  • 8Bai Z J, Skoogh D. A projection method for model reduction of bilinear dynamical system[J]. Linear Algebra and its Applications, 2006, 415: 406-425.
  • 9Zhang L Q, Lam J. On/-/2 model reduction of bilinear systems[J]. Automatica, 2002, 38: 205-216.
  • 10Benner P, Breiten T. Interpolation-based H~ model reduction of bilinear control systems[J]. SIAM Journal on Matrix Analysis and Applications, 2012, 33(3): 859-885.

二级参考文献18

  • 1Bai Z J, Slone R D,Smith W T and Ye Q. Error bound for reduced system model by Padeapproximation via the Lanczos process [J]. IEEE Trans. Comput. Aid. D.,1999,18: 133-141.
  • 2Cao Y and Petzold L. A posteriori error estimation and global error control for ordinary differentialequations by the adjoint method[J]. SIAM. J. Sci. Comput., 2004,26: 359-374.
  • 3Feldmann P and Freund R W. Efficient linear circuit analysis by Pade approximation via theLanczos process [J]. IEEE Trans. Comput. Aid. D., 1995,14: 639-649.
  • 4Freund R W. SPRIM: Structure-preserving reduced-order interconnect macromodeling. Proc. ofInternational Conference on Computer-Aided Design(ICCAD), 2004,80-87.
  • 5Gudmundsson T, Kenney C S and Laub A J. Small-sample statistical estimates for matrix norm-s[J]. SIAM J. Matrix Anal. Appl.,1995, 16: 776-792.
  • 6Kenney C S and Laub A J. Small-sample statistical condition estimates for general matrix func-tions[J]. SIAM J. Sci. Comput., 1994,15: 36-61.
  • 7Knockaert L and Zutter D D. Laguerre-SVD reduced-order modeling[J]. IEEE Trans. Microw.Theory., 2000,48: 1469-1475.
  • 8Moore B C. Principal component analysis in linear systems: controllability, observability, andmodel reduction [J]. IEEE Trans. Automat. Contr., 1981, 26: 17-32.
  • 9Mullis C T and Roberts R A. Synthesis of minimum roundoff noise fixed-point digital-filters[J].IEEE Trans. Circuits and Systems, 1976, 23: 551-562.
  • 10Odabasioglu A, Celik M and Pileggi L T. PRIMA: Passive reduced-order interconnect macromod-eling algorithm [J]. IEEE Trans. Comput. Aid. D., 1998, 17: 645-654.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部