期刊文献+

一个基于PHG平台的并行有限元生物分子模拟解法器 被引量:3

A PARALLEL FINITE ELEMENT SOLVER FOR BIOMOLECULAR SIMULATIONS BASED ON THE TOOLBOX PHG
原文传递
导出
摘要 本文介绍一个面向生物分子模拟的并行有限元解法器,该解法器基于三维并行自适应有限元软件平台PHG^([1]),计算并模拟在生物溶液系统在静电场下的扩散过程.该解法器的最新版本在已有算法的基础上^([2]),添加了整体求解、含时求解等一些新算法,规范并扩展了边界条件的选取,并整合多项辅助功能,现提供对于Poisson-Nernst-Planck(PNP)方程的两个含时算法和四个稳态算法,以及对于Smoluchowski-Poisson-Boltzmann(SPB)方程的一个稳态算法.解法器可模拟生物分子,离子通道和纳米管等模型,通过有限元方法计算静电场和离子浓度分布,并计算电流强度、反应速率等物理量,可研究离子通道的选择机理,酶的催化反应过程及反应速率等问题.相关软件、工具和进展见www.continuummodel.org. In this paper a parallel finite element solver for biomolecular simulations is introduced. This solver is based on the three dimensional parallel finite element toolbox PHG and able to simulate the diffusion process influenced by electrostatic field in biological solution. The solver is developed from our previous work with new algorithms added, now offering two time-dependent algorithms and four steady-state algorithms for the Poisson-Nernst-Planck equations, while one steady-state algorithm is provided for Smoluchowski-Poisson-Boltzmann equations. The solver is able to simulate the biomolecular models, including ion channel and nanopore, and solve electrostatic field and concentration distributions for all species. Furthermore, current and reaction rate is calculated to study the functions of ion channel and enzyme.
机构地区 LSEC
出处 《数值计算与计算机应用》 CSCD 2016年第1期67-82,共16页 Journal on Numerical Methods and Computer Applications
关键词 解法器 PHG 生物溶液 静电场 扩散 算法 solver PHG biological solution electrostatic field diffusion algorithm
  • 相关文献

参考文献1

二级参考文献11

  • 1J. Bey.Tetrahedral grid refinement[J].Computing.1995(4)
  • 2E.G.Sewell.Automatic generation of triangulation for piecewise polynomial approximation[]..1972
  • 3W.F.Mitchell.Unified multilevel adaptive finite element methods for elliptic problems[]..1988
  • 4W.F.Mitchell.The full domain partition approach to parallel adaptive refinement[].Grid Generation and Adaptive Algorithms.1998
  • 5W.F.Mitchell.The Parallel Hierarchical Adaptive Multi-Level Project. http://math.nist.gov/phaml/ .
  • 6J.G.Castanos,J.E.Savage.Parallel refinement of unstructured meshes[].Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems.1999
  • 7A.Plaza,M.C.Rivara.Mesh refinement based on the 8-tetrahedra longest-edge partition[].Proceedingsth International Meshing RoundtableSandia National Laboratories.2003
  • 8M.C.Rivara,D.Pizarro,N.Chrisochoides.Parallel refinement of tetrahedral meshes using terminal-edge bisection algorithm[].Proceedings th International Meshing Roundtable.2004
  • 9P.P.Pébay,D.C.Thompson.Parallel mesh refinement without communication[].Proceedings th International Meshing Roundtable.2004
  • 10S.Balay,K.Buschelman,W.D.Gropp,D.Kaushik,M.G.Knepley,L.C.McInnes,B.F.Smith,H.Zhang. PETSc Web page,http://www.mcs.anl.gov/petsc .

共引文献30

同被引文献16

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部