期刊文献+

盲接收条件下单信道时频混叠信号的调制识别 被引量:4

Modulation Recognition for Time-Frequency Overlapped Signals in Single-Channel under Blind Reception Conditions
下载PDF
导出
摘要 针对现有调制识别算法对单信道时频混叠信号失效问题,从信号循环平稳域出发,通过分析不同调制信号自身具有以及做非线性变换处理衍生出的二阶循环平稳结构特征,结合循环平稳性检测,提出了一种新的适用于单信道时频混叠信号的调制识别算法。该算法无需完成任何参数估计以及同步等预处理过程。对一些典型常用调制信号(如BPSK、QPSK、16QAM、OQPSK等)的随机混合,能够同时有效辨识混叠信号中所包含的信号个数以及每个信号的调制类型,理论推导及仿真结果表明,该算法可在较低信噪比下实现对单信道时频混叠信号的调制识别,有效提高了盲接收条件下对QPSK/16QAM时频混叠信号的分类能力。 Considering the current modulation recognition algorithms losing effectiveness for time-frequency overlapped signals received by single channel,through analyzing the second order cyclostationary structural characteristics owned by different modulated signals or derived from the nonlinearities change,a novel method based on cyclostationary test is proposed for time-frequency overlapped signals in single-channel. The method does not need any preprocessing tasks,such as estimation of any parameters and synchronization. It also can effectively identify the source number and modulation type of each signal when the received signal is the random mixture of several typical common modulation signals( BPSK、QPSK、16QAM、OQPSK etc.) simultaneously. Theoretical analysis and simulation result show that the method can realize the modulation identification for time-frequency overlapped signals in single-channel with low SNR,and effectively promote the classification capability for QPSK /16 QAM time-frequency overlapped signals under blind reception conditions.
机构地区 信息工程大学
出处 《信息工程大学学报》 2016年第1期34-40,共7页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61401511)
关键词 调制识别 时频混叠 循环累积量 循环平稳性检测 modulation recognition time-frequency overlap cyclic cumulants cyclostationary test
  • 相关文献

参考文献5

二级参考文献49

  • 1魏平.共信道重叠多信号的分离识别[J].通信对抗,2005(1):5-10. 被引量:6
  • 2张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806. 被引量:44
  • 3蔡权伟,魏平,肖先赐.单信道多信号分量分离[J].通信学报,2006,27(6):49-56. 被引量:11
  • 4刘双平,闻翔,金梁.一种抑制符号速率估计背景色噪声的非线性滤波算法[J].电子学报,2007,35(1):95-99. 被引量:28
  • 5Sun T. Y, Liu C. C, Tsai S. J, Hsieh S. T. Blind source separation with dynamic source number using adaptive neural algorithm [ J ]. Expert Systems with Applications, 2009,36 (5) :8855-8861.
  • 6Johnson B. A, Abramovich Y. I. DOA estimator perform- ance assessment in the pre-asymptotic domain using the likelihood principle [J]. Signal Processing,2010,90(5) : 1392-1401.
  • 7Johnson B. A, Abramovich Y. I. Detection-estimation of multi-rank Gaussian sources using expected likelihood [ J]. Digital Signal Processing,2011,21 ( 3 ) :568-575.
  • 8Akaike H. A new look at statistical model identification [ J ]. IEEE Transactions on Automatic Control, 1974, (AC- 19) :716-722.
  • 9Wax M, Kai|ath T. Detection of signals by information theoretic criteria [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985,33 (2):387-392.
  • 10Pham D. T, Vrins F. Local minima of information-theo- retic criteria in blind source separation [ J ]. 1EEE Signal Processing Letter,2005,12( 11 ) :788-791.

共引文献61

同被引文献34

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部