期刊文献+

格上前向安全的环签名方案 被引量:2

Forward-Secure Ring Signature Scheme from Lattices
下载PDF
导出
摘要 环签名可以使用户以完全匿名方式对消息进行签名。用户私钥的安全性是公钥密码体制安全的基础。一旦用户私钥信息发生泄漏,公钥密码体制的安全性将受到严重威胁。目前的前向安全环方案都是基于大整数分解和离散对数问题的,其在量子计算环境下都不安全。为了应对量子计算机的威胁和减少环签名体制中私钥泄露带来的危害,构造了一个格上前向安全的环签名方案;基于格上的小整数解问题,在随机预言模型下证明了方案的安全性。 Ring signature allows a user to sign a message anonymously. All public key cryptographic schemes rely on the security of the secret key. Once a signing secret key is exposed,the security of a public key cryptographic scheme will be compromised. Currently,forward-secure ring signature schemes are based on large integer factorization and discrete logarithm which are not secure in quantum setting. To mitigate the damage of key exposure in the context of ring signature,a lattice-based forward-secure ring signature scheme is proposed in this paper,which is conjectured to thwart the quantum threat. Its security is based on the small integer solution problem( SIS) in the random oracle model.
机构地区 信息工程大学
出处 《信息工程大学学报》 2016年第1期93-96,共4页 Journal of Information Engineering University
关键词 环签名 前向安全 小整数解问题 ring signature forward security lattices small integer solution problem
  • 相关文献

参考文献11

  • 1Rivest R L, Shamir A, Tauman Y. How to leak a secret [ C]//Asiacrypt 2002. 2001 : 552-565.
  • 2Anderson R. Two remarks on public key cryptology [ C]//CCS 1997. 1997:462-487.
  • 3Bellare M, Miner S. A forward-secure digital signature scheme [ C ]//Crypto1999. 1999 : 431-448.
  • 4Liu J K, Wong D S. Solutions to key esposure problem inring signature [ J]. International Journal of Network Secur- ity, 2008, 6(2): 170-180.
  • 5Liu J K, Yuen T H, Zhou J. Forward secure ring signa- ture without random oracles [ C ]//ICICS 2011. 2011 : 1-14.
  • 6Zhang X, Xu C, Jin C, et al. Efficient forward secure i- dentity-based shorter signature from lattice [ J ]. Computers & Electrical Engineering, 2014, 40(6) :1963-1971.
  • 7Agrawal S, Boneh D, Boyen X. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE [C]//CRYPTO 2010. 2010: 98-115.
  • 8Cash D, Hofheinz D, Kiltz E, et al. Bonsai trees, or how to delegate a lattice basis [ C]//Eurocrypto 2010. 2010: 523 -552.
  • 9Alwen J, Peikert C. Generating shorter bases for hard random lattices [ J]. Theory of Computing Systems, 2011, 48(3) :535-553.
  • 10Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[ C ]// STOC 2008. 2008: 197-206.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部