期刊文献+

基于小波变换和粒子群小波神经网络组合模型的有效停车泊位短时预测 被引量:23

Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model
下载PDF
导出
摘要 基于停车场有效停车泊位短时变化特性,提出了一种小波变换和粒子群小波神经网络组合预测方法。首先,通过选择合适的小波函数对有效停车泊位时间序列进行多尺度的小波分解与重构,然后对重构后的时间序列分别采用小波神经网络进行预测,并利用粒子群算法对神经网络初始参数的选取进行优化,最后将各自外推的预测结果进行合成,得到最终预测结果。实例分析表明:与单独使用小波神经网络模型相比,小波变换-粒子群小波神经网络模型的预测精度提高了5-7倍,且预测稳定性较好。 A forecasting model was proposed based on the short-term changing characteristics of Available Parking Space(APS).This model integrates the wavelet analysis,Particle Swarm Optimization(PSO)and Wavelet Neural Network(WNN).First,the APS time series were decomposed and reconstituted by wavelet analysis.Then,WNN model was used to forecast the reconstructed time series respectively.The PSO method was employed to optimize the selection of the initial parameters of the neural network.Finally,the final forecasted ASP was induced by integrating the prediction results.A case study was carried out to verify the applicability of the proposed model.Compared with simple WNN model,the new method enjoys higher accuracy and stable performance that the APS forecasting can be improved by 5to 7times by this new method.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第2期399-405,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金国际合作与交流项目(5151101143) 国家自然科学基金项目(51338003 50908051) 江苏省普通高校研究生科研创新计划项目(SJLX_0094)
关键词 交通运输系统工程 有效停车泊位 短时预测 小波变换 粒子群算法 小波神经网络 engineering of communication and transportation system available parking space shortterm forecasting wavelet particle swarm optimization wavelet neural network
  • 相关文献

参考文献11

  • 1杨兆升,陈晓冬.智能化停车诱导系统有效停车泊位数据的预测技术研究[J].交通运输系统工程与信息,2003,3(4):12-15. 被引量:32
  • 2陈群,晏克非,王仁涛,莫一魁.基于相空间重构及Elman网络的停车泊位数据预测[J].同济大学学报(自然科学版),2007,35(5):607-611. 被引量:16
  • 3Dunning A E.Method and System for Projecting Dynamic Parking Availability Based on an Ongoing Survey for Remote Lots with High Demand[P].United State Patent:7049979,2006-05-23.
  • 4Liu S,Guan H,Yan H,et al.Unoccupied parking space prediction of chaotic time series[C]∥Proceedings of the 10th International Conference of Chinese Transportation Professionals,Beijing,2010:2122-2131.
  • 5Caliskan M,Barthels A,Scheuermann B,et al.Predicting parking lot occupancy in vehicular ad hoc networks[C]∥Proceedings of the Vehicular Technology Conference,2007 VTC2007-Spring IEEE65th,Dublin,2007:277-281.
  • 6季彦婕,王炜,邓卫.Available parking space occupancy change characteristics and short-term forecasting model[J].Journal of Southeast University(English Edition),2007,23(4):604-608. 被引量:5
  • 7Kriechbaumer T,Angus A,Parsons D,et al.An improved wavelet-ARIMA approach for forecasting metal prices[J].Resources Policy,2014,39:32-41.
  • 8杨飞.基于回声状态网络的交通流预测模型及其相关研究[D].北京:北京邮电大学,2012.
  • 9Mallat S.A Wavelet Tour of Signal Processing[M].Academic Press,1999.
  • 10Xu L,Liu S.Study of short-term water quality prediction model based on wavelet neural network[J].Mathematical and Computer Modelling,2013,58(3/4):807-813.

二级参考文献17

共引文献43

同被引文献108

引证文献23

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部