期刊文献+

大跨度中央开槽钢箱梁悬索桥颤振关键参数研究 被引量:4

Research on key parameters of critical flutter wind speed for slotted steel box girder suspension bridges
下载PDF
导出
摘要 中央开槽钢箱梁作为第三代钢箱梁,可改善结构的气动性能,提高颤振临界风速,但开槽箱梁的优化选型受多种因素影响。为全面阐述开槽箱梁的气动优化选型规律,通过风洞试验和数值方法综合研究了多个关键参数对颤振性能的影响:通过节段模型风洞试验,研究了开槽比对颤振临界风速的影响规律,并获得了多组颤振导数;采用二维颤振直接分析数值算法,研究了钢箱梁的几何参数、质量参数、频率参数和纵向遮盖率等对悬索桥颤振临界风速的影响规律。研究发现:颤振临界风速随开槽宽度增加先增大后减小,存在最优开槽比;开槽宽度增加使质量和质量惯矩增大,质量和质量惯矩的增加有利于颤振稳定性能的提高;随着扭转频率的增大颤振性能增强,竖弯频率则相反;纵向遮盖各工况也存在最优遮盖率,影响颤振的规律与中央开槽类似;颤振临界风速对各个参数的敏感度不同,敏感度从小到大依次为:质量、竖弯基频、质量惯矩、扭转频率。该研究成果可为开槽箱梁的气动选型提供参考。 The central slotted steel box girder, as the third generation steel box girder, can improve the aerodynamic performance of the structure, especially increasing the critical flutter wind speed. However, the selection of the optimal type of the slotted box girder is affected by multiple factors. In order to comprehensively expound the optimal configuration of the central slotted box girder, this paper carries out research on the influence of multiple key parameters on the flutter stability, utilizing wind tunnel tests and numerical simulation. Firstly, the effect of the slot ratio on the critical flutter wind speed is studied by section model wind tunnel tests, and multiple flutter derivatives are identified. Thereafter, the effects of the geometric parameter, the mass parameter, the frequency parameter, and the longitudinal coverage ratio on the critical flut- ter wind speed are investigated through two dimensional flutter straight forward method. Research shows that the critical flutter wind speed first increases and then decreases as the slot width increases, and there is an optimal slot ratio the increase of the slot width enhances the mass and the moment of inertia, the increase of the mass or the moment of inertia is beneficial to the flutter stabiiity; the increase of torsional frequency is favorable to the flutter stability while the vertical bending frequency plays a contrary role; the effect of the longitudinal coverage ratio on the flutter stability is similar to that of the central slot, and there is also an optimal longitudi- nal coverage ratio; the parameter susceptibility is sequenced from low to high as mass, bending frequency, moment of inertia and torsional frequency. Research results can provide a reference for the aerodynamic type selection.
出处 《实验流体力学》 CAS CSCD 北大核心 2016年第1期68-73,90,共7页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金重大研究计划项目(90715039) 国家自然科学基金青年基金(51308178)
关键词 大跨度悬索桥 颤振性能 中央开槽钢箱梁 开槽比 扭弯频率 long-span suspension bridge flutter stability central slotted steel box girder slot ratio torsional and bending frequency
  • 相关文献

参考文献11

  • 1Sato H, Ogihara K. Aerodynamic characteristics of slotted box girders[C]. The Hong Kong Institution of Engineers. Proceedings of Bridges into 21st Century. Hong Kong: The Hong Kong Institution of Engineers, 1995: 721-728.
  • 2Larsen A. Aeroelastic considerations for the gibraltar bridge feasibility study [ M]//Bridge Aerodynamics. Rotterdam : Balkema, 1998: 165-173.
  • 3曹丰产.桥梁断面中间开槽对颤振稳定性的影响[J].同济大学学报(自然科学版),2002,30(5):551-556. 被引量:11
  • 4杨詠昕,葛耀君,曹丰产.大跨度悬索桥中央开槽箱梁断面的颤振性能[J].中国公路学报,2007,20(3):35-40. 被引量:19
  • 5邹小洁,杨詠昕,葛耀君.大跨度悬索桥钢箱加劲梁中央开槽的颤振控制机理[J].力学季刊,2007,28(2):187-194. 被引量:6
  • 6中华人民共和国交通部.JTG/TD60-01-004公路桥梁抗风设计规范[S].北京:人民交通出版社,2004.
  • 7丁泉顺,陈艾荣,项海帆.桥梁断面气动导数识别的修正最小二乘法[J].同济大学学报(自然科学版),2001,29(1):25-29. 被引量:26
  • 8Scanlan R, Tomko J. Airfoil and bridge deck flutter derivatives [J]. Journal of Engineering Mechanics, 1971, 97 (6) : 1717- 1737.
  • 9Simiu Emil, Scanlan Robert H. Wind effects on structures fundamentals and applications to design[M]. 3rd ed. NewYork: A Wiley-lnter science Publication, 1996.
  • 10Wilde K, Fujino Y, Masukawa J. Time domain modeling of bridge deck flutter[J]. Structural Engineering Earthquake Engineering, 1996, 13(2): 93-104.

二级参考文献37

  • 1陈政清.斜拉索风雨振现场观测与振动控制[J].建筑科学与工程学报,2005,22(4):5-10. 被引量:60
  • 2杨詠昕,葛耀君,项海帆.大跨度桥梁典型断面颤振机理[J].同济大学学报(自然科学版),2006,34(4):455-460. 被引量:12
  • 3邰扣霞,丁大钧.中国桥梁建设新飞跃[J].建筑科学与工程学报,2006,23(2):30-40. 被引量:41
  • 4张若雪.桥梁结构气动导数识别的理论和试验研究[M].上海:同济大学桥梁工程系,1998..
  • 5SCANLAN R, TOMKO J. Airfoil and bridge deck flutter derivatives [ J ]. Journal of Engineering Mechanics, 1971, 97(6) : 1717 - 1737.
  • 6WILDE K, FUJINO Y, MASUKAWA J. Time domain modeling of bridge deck flutter [ J]. Structural Engineer- ing Earthquake Engineering, 1996, 13: 93- 104.
  • 7XIANG H, ZHANG R. On mechanism of flutter and uni- fied flutter theory of bridges [ C ]//Wind Engineering into the 21st Century. Rotterdam: [ s. n. ] , 1999:1069 - 1074.
  • 8YANG Y, GE Y, XIANG H. Coupling effects of degrees of freedom in flutter instability of long-span bridges [ C ]//Proceeding of the 2nd International Symposium on Advances in Wind & Structures. Busan:Techno Press, 2002 : 625 - 632.
  • 9MATSUMOTO M, NIHARA Y, KOBAYASHI Y, et al. Flutter mechanism and its stabilization of bluff bodies [ C ]//Proceedings of the Ninth International Conference on Wind Engineering. New Delhi, India : [ s. n. ], 1995 : 827 - 838.
  • 10MATSUMOTO M, HAMASAKI H, YOSHIZUMI F. On flutter stability of decks for super long-span bridge [ J ]. Structural Engineering Earthquake Engineering, 1997,14:185-200.

共引文献61

同被引文献58

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部