期刊文献+

米曲霉酸性蛋白酶Ap的结构分析 被引量:2

Structural Analysis of Acid Protease( Ap) from Aspergillus oryzae
下载PDF
导出
摘要 米曲霉(Aspergillus oryzae)酸性蛋白酶与部分商品化的蛋白酶相比,具有对大豆蛋白水解效率高且水解产物苦味弱的特性。作者采用RT-PCR技术克隆获得酸性蛋白酶(Ap)基因,结合生物信息学手段,对Ap进行分析与预测。结果表明:Ap基因对密码子使用频率具有偏好性,特别是第3位密码子对GC碱基的使用频率高,达到74%;编码404个氨基酸残基。Ap属于胞外天冬氨酸蛋白酶。以海枣曲霉(A.phoenicis)的酸性蛋白酶(PDB code:1IBQ)作为模板同源建模结果可知,Ap分子至少能与2个Zn2+结合,内含1个二硫键、163个氢键、35个盐碱。该酶与1IBQ相比空间结构总体相似,部分重要位点(如flap环、转角和ψ-loops)的氨基酸残基较为保守。 Compared with some commercial proteases,acid protease(Ap) from Aspergillus oryzae has high hydrolysis efficiency and produces soy hydrosates with weaker bitterness. In order to uncover the structural characteristics,Ap gene from A. oryzae was cloned by RT-PCR technology,and then was analyzed with bioinformatics technology. Results showed that Ap gene had a preference for codon usage,especially for the third codon with the 74% usage frequency of GC base,and encoded 404 amino acid residues. Ap was an extracellular aspartic proteinase. According to the structure obtained by homology modeling with acid protease from A. phoenicis(PDB code:1IBQ),Ap was found to possess at least two Zn2+binding sites,one disulfide bond,163 hydrogen bonds,35 salt bonds,and two solvent accessible surfaces of D33(4.7849魡2) and D215(3.5941魡2). Though the spatial structures of Ap and 1IBQ were similar,residues of some important sites(such as flap ring,angle and ψ-loops) were conservative.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2016年第1期95-100,共6页 Journal of Food Science and Biotechnology
基金 广东省科技计划项目(2011B010500018) 韶关市科技专项资金资助项目(2013CX/K83) 韶关学院大学生创新创业训练计划省级立项项目(1057613-003) 韶关学院大学生科技创新培育项目(2015-6)
关键词 米曲霉 酸性蛋白酶 结构分析 Aspergillus oryzae acid protease structural analysis
  • 相关文献

参考文献13

  • 1A Sumantha .C Lan'oche, A Pandey. Microbiology and industrial biotechnology of food-grade proteases:a perspective [J]. Food Technology and Biotechnoiogy, 2006,44 ( 2 ) : 211-220.
  • 2潘进权.蛋白酶脱除大豆蛋白水解物苦味的研究进展[J].食品研究与开发,2011,32(5):167-171. 被引量:7
  • 3T Nakadai,S Nasuno, N Iguchi. The action of peptidases from A.orvzu" in digestion of soybean proteins [J]. Agricultural and Biological Chemistry, 1972,36 ( 2 ) : 261-268.
  • 4J Chutmanop.S Chuichulcherm.Y Chisti.et al. Protease production by .4st,'rgillus or)zae in solidstate fermentation using agroindustrial substrates[J]. Journal of Chemical Technology and Biotechnology. 2008.83 (7) : 1012-1018.
  • 5SW Cho,NJ Kim.MU Choi ,et al. Structure of aspergillopepsin I from A spergillus phoenicis:variations of the S1'-$2 subsite in aspartic proteinases[J]. Acta Crystallographica Section D (Biological Crystallography ), 2001 (57) : 948-956.
  • 6JB Cooper,G Khan,G Taylor,et al. X-ray analyses of aspartic proteinases. 11. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 resolution[J]. Journal of Molecular Biology, 1990.214 ( 1 ) : 199-222.
  • 7JS Roland, M de V William,A M L Jack,et al. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serineproteinases[J]. Protein Engineering Design & Selection, 1991,4 ( 7 ) : 719-737.
  • 8IL Alberts, K Nadassy, SJ Wodak. Analysis of zinc binding sites in protein crystal structures [J]. Protein Science, 1998,7(8): 1700-1716.
  • 9Han Zhen-lin, Han Shuang-yan, Zheng Sui-ping, et al. Enhancing thermostability of a Rhizom~cor michel lipase by engineering a disulfide bond and displaying on the yeast cell surface[J]. Applied Microbiology and Biotechnology, 2009,85( 1 ) : 117-126.
  • 10J Arn6 rsdottir,M M Kristja nsson,R Ficner. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic t'ibrio species reveals structural aspects of cold adaptation[J]. Federation of European Biochemical Societies Journal, 2005.272 (3) : 832-845.

二级参考文献22

  • 1Ishibashi N, Ono I, Kato K, et al. Role of the hydrophobic amino acid residue in the bitterness of peptides [J]. Agric Biol Chem, 1988,52(1): 91-94.
  • 2Aldler-Nissen J. A review of food protein hydrolysis specific areas. In: Enzymic hydrolysis of food proteins [M]. London and New York, Lsevier applied science publishers, 1986:57-507.
  • 3Ney K H. Bitterness of peptides: amino acid composition and chain length[C]//Bondreau J C. Food taste chemistry. Washington: American chemical society, 1979:149-173.
  • 4Ishibashi N, Arita Y, Kanehisa H, et al. Bitterness of Leucine- containing peptides[J]. Agric Biol Chem 1987,51 (9):2359-2394.
  • 5Ishibashi N, Sadamori K, Yamamoto O, et al. Bitterness of Pheny- lalanineandtyrosine-containingpeptides [J].AgricBiolChem, 1987, 51 (12) :3309-3313.
  • 6Otagiri K, NOsho Y, shinoda I, et al. Studies on a model of bitter peptides including Arginine, Proline and Phenylalanine residues [J]. Agric Biol Chem, 1985,49(4):1019-1026.
  • 7Ishibashi N, Kubo T, Chino M, et al. Taste of proline-containing peptides [J]. Agric Biol Chem, 1988,52(1):95-98.
  • 8Ishibashi N, Arita Y, Kanehisa H, et al. A mechanism for bitter taste sensibility in peptides [J]. Agile Biol Chem, 1988,52(3) :819-827.
  • 9Tanford C. Contribution of hydrophobic interactions to the stability of the globular conformation of proteins [J]. J Am Chem Soc, 1962, 84: 4240-4247.
  • 10Bumberger E, Belitz HD. Bitter taste of enzymic hydrolyzates of casein [J]. Z Lebensm-Unters Forsch, 1993, 197:14-19.

共引文献6

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部