期刊文献+

基于均值/方差分类的三维SOM初始化模式库算法

An initial pattern library algorithm based on mean/variance classification for 3D SOM
下载PDF
导出
摘要 针对传统的初始化模式库算法存在模式矢量利用率低、与信源匹配程度不高的不足,提出一种基于均值/方差分类三维SOM初始化模式库算法。根据均值分类,将训练矢量集按照方差排序,以相同间隔抽取矢量组成初始化模式库。将算法运用到基于三维SOM算法的图像编码,结果表明,均值/方差分类初始化模式库算法无效模式矢量数量少、与信源匹配程度高,能有效地提高三维SOM算法的性能。 The pattern vector utilization and source matching degree is low for the traditional initial pattern library algorithm, so a new initial pattern library algorithm based on mean/variance classification for 3D SOM is proposed. The training vectors are sorted by mean value, then the training vectors in each part are sorted by variance and initial pattern library is chosen in pattern vectors at the same intervals. Experimental results show that the initial pattern library algorithm based on mean/variance classification has less invalid pattern vectors and high source matching degree. It is an effective way to improve the performance of 3D SOM algorithm.
出处 《桂林电子科技大学学报》 2016年第1期35-38,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61261035) 桂林电子科技大学研究生教育创新计划(GDYCSZ201451)
关键词 三维SOM 初始化模式库算法 图像模式识别 图像编码 three-dimensional self-organizing feature maps initial pattern library algorithm image pattern recognition image coding
  • 相关文献

参考文献13

  • 1KOHONEN T.An introduction to neural computing[J].Neural Networks,1988,1(1):3-16.
  • 2ORTIZ A,GORRIZ J M,RAMIREZ J,et al.Improving MR brain image segmentation using self-organising maps and entropy-gradient clustering[J].Information Sciences,2014,262:117-136.
  • 3LIAN Yuanfen,WU Falin.Three-dimensional probabilistic neural network using for MR image segmentation[C]//2011 10th International Conference on IEEE Electronic Measurement and Instruments,2011,3:127-131.
  • 4PARISI G I,WERMTER S.Hierarchical SOM-based detection of novel behavior for 3D human tracking[C]//The 20131nternational Joint Conference on IEEE Neural Networks,2013:1-8.
  • 5KOHONEN T.Essentials of the self-organizing map[J].Neural Networks,2013,37:52-65.
  • 6WIJAYASEKARA D,LINDA O,MANIC M.CAVESOM:immersive visual data mining using 3D self-organizing maps[C]//The 2011International Joint Conference on IEEE Neural Networks,2011:2471-2478.
  • 7SCHMIDT A,HANSON C,KATHILANKAL J,et al.Classification and assessment of turbulent fluxes above ecosystems in North-America with self-organizing feature map networks[J].Agricultural and Forest Meteorology,2011,151(4):508-520.
  • 8WIRTH H,LFFLER M,VON BERGEN M,et al.Expression cartography of human tissues using self organizing maps[J].BMC bioinformatics,2011,12(1):306.
  • 9黎洪松,王艳华.一种高效处理三维信号的自组织映射算法[J].桂林电子科技大学学报,2014,34(2):120-125. 被引量:2
  • 10LI Hongsong,LI Da.A new image coding scheme based upon image pattern recognition[C]//2010IEEE International Conference on Intelligent Computing and Intelligent Systems,2010:172-174.

二级参考文献35

  • 1陈善学.图像矢量量化的等误差自组织特征映射算法[J].系统工程与电子技术,2004,26(9):1189-1191. 被引量:3
  • 2薛向阳,樊昌信.基于自组织特征映射的图像矢量量化研究[J].电子学报,1995,23(4):24-29. 被引量:6
  • 3黎洪松.一种新的自组织神经网络算法[J].北京师范大学学报(自然科学版),2005,41(5):496-498. 被引量:5
  • 4黎洪松,刘洪伟.新的学习矢量量化初始码书算法[J].北京邮电大学学报,2006,29(4):33-35. 被引量:12
  • 5Kohonen T. The self-organizing map[J].Proceedings of the IEEE, 1990,78(9):1464.
  • 6Kohonen T. Self-organizing and associative memory [M]. New York: Springer-Verlag, 1984.
  • 7Kohonen T. An introduction to neural computing[J]. Neural Networks, 1988(1) :3.
  • 8Fang W C, Sheu B J. A VLSI neural processor for image data compression using self-organizing networks [J]. IEEE Trans. on Neural Networks, 1992, 3(5):1112.
  • 9Gafiychuk V V, Datsko B Y, Izmaylova J. Analysis of data clusters obtained by self-organizing methods[J]. PhysicabStatistical Mechanics and Its Applications, 2004, 341(10):547.
  • 10TanX Y, Chen S C, Zhou Z H, et al. Robust face recognition from a single training image per person with kernel-based SOM [C]///ISNN 2004 on Advances in Neural Networks, Dalian, 2004:858-863.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部