期刊文献+

两类非线性Schrdinger型方程的局部临界周期分支

Local bifurcation of critical periods for two nonlinear Schrdinger type equations
下载PDF
导出
摘要 针对非线性Schrdinger型方程的局部临界周期分支问题,通过行波变换将两类Schrdinger型方程转换为同一等价Hamiltonian系统,应用Mathematica计算Hamiltonian系统的周期常数,得到原点为一阶细中心的充要条件,并证明了该系统在原点邻域存在一个局部临界周期分支。分析结果表明,两类非线性Schrdinger型方程均恰有一个局部临界周期分支,即在原点附近邻域内闭轨周期的单调性变换一次。 To solve the local bifurcation of critical periods of nonlinear Schrodinger type equation, the generalized nonlinear de- rivative Schr6dinger equation and the high-order dispersive nonlinear Schrodinger equation are converted to a equivalence Hamiltonian system by using traveling wave transformation. The period constants of Hamiltonian system are calculated and the necessary and sufficient condition of the origin with one order weak center is obtained by using Mathematica software. It is proved that there is one local bifurcation of critical periods in the origin of the system. The result shows that the two non- linear Schrodinger type equations have only one local bifurcation of critical periods in the neighborhood of near origin, which means that the monotonicity of the periodic for two nonlinear Schrodinger type equations changes once.
作者 杨剑 黄文韬
出处 《桂林电子科技大学学报》 2016年第1期71-75,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11261013) 广西自然科学基金(2012GXNSFAA053003)
关键词 周期常数 细中心 局部临界周期分支 period constant weak center~ local bifurcation of critical periods
  • 相关文献

参考文献22

  • 1CHICONE C,JACOBS M.Bifurcation of critical periods for plane vector fields[J].Transactions of the American Mathematical Society,1989,312(2):433-486.
  • 2SIBIRSKIK S.On the number of limit cycles in the neighborhood of a singular point.[J].Differentsial’nye Uravnenija,1965(1):53-66.
  • 3LIN Yiping,LI Jibin.Normal form and critical points of the period of closed orbits for planar autonomous systems[J].Acta Mathematica Sinica,1991,34:490-501.
  • 4ROUSSEAU C,TONI B.Local bifurcation of critical periods in vector fields with homogeneous nonlinearities of the third degree[J].Canadian Mathematical Bulletin,1993,36(4):473-484.
  • 5ROMANOVSKI V G,HAN Mao’an.Critical period bifurcations of a cubic system[J].Journal of Physics A General Physics,2003,36(18):5011-5022.
  • 6ZHANG Weinian,HUO Xiaorong,ZENG Zhenbing.Weak centers and bifurcation of critical periods in reversible cubic systems[J].Computers&Mathematics with Applications,2000,40(6):771-782.
  • 7CHEN Xingwu,ZHANG Weinian.Decomposition of algebraic sets and applications to weak centers of cubic systems[J].Journal of Computational and Applied Mathematics,2009,232(2):565-581.
  • 8YU Pei,HAN Maoan.Critical periods of planar revertible vector field with third-degree polynomial functions[J].International Journal of Bifurcation and Chaos,2009,19(1):419-433.
  • 9ROUSSEAU C,TONI B.Local bifurcations of critical periods in the reduced Kukles system[J].Canadian Journal of Mathematics,1997,49(2):338-359.
  • 10MANOSAS F,VILLADELPRAT J.A note on the critical periods of potential systems[J].International Journal of Bifurcation and Chaos,2006,16(3):765-774.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部