期刊文献+

合作型协同多目标群搜索算法 被引量:3

Cooperative Coevolutionary Multi-objective Group Search Optimizer
下载PDF
导出
摘要 群搜索算法(Group Search Optimizer,GSO)是一种基于动物群体行为的智能优化算法,在高维函数优化和收敛性方面表现出良好性能.本文基于分而治之策略和协同进化框架,提出了一种合作型协同多目标群搜索算法(Cooperative Coevolutionary M ulti-Objective GSO,CM OGSO).首先将群(group)划分为多个子群(sub-groups),采用改进的群搜索算法演化每个子群,其次选择其它子群中处于非支配位置的成员(member),构建当前子群的成员的上下文向量,通过目标函数评价子群成员.最后,结合各个子群的成员构建多目标问题的Pareto解集.实验结果表明,相比于其他多目标优化算法,CMOGSO算法所求Pareto解集具有精度高、解分布均匀等优势,能够有效地解决多目标优化问题. Group Search Optimizer( GSO) is a swarm intelligence algorithm inspired from animal's foraging behavior. Its superiority is demonstrated in high dimensional function optimization. Based on the strategy of divide-and-conquer and cooperative coevolution framework,a Cooperative Coevolutionary Multi-objective Group Search Optimizer( CMOGSO) is proposed in this paper. In CMOGSO,multiobjective optimization problems are decomposed according to their decision variables and are optimized by improved GSO respectively.Collaborators are selected randomly from archive and employed to construct context vectors in order to evaluate the members in subgroups. Experimental results demonstrate that CMOGSO can more effectively and efficiently solve multi-objective optimization problemsand the accuracy and distribution of final Pareto set are competitive compared with other evolutionary multi-objective optimizers.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第3期567-571,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61373149 61272094 61472232)资助
关键词 群搜索算法 多目标优化 协同进化 上下文向量 group search optimizer multi-objective optimization coevolution context vector
  • 相关文献

参考文献3

二级参考文献58

  • 1安伟刚,李为吉.单纯形-多目标粒子群优化方法的混合算法[J].西北工业大学学报,2004,22(5):563-566. 被引量:10
  • 2熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 3王丽,刘玉树,徐远清.基于在线归档技术的多目标粒子群算法[J].北京理工大学学报,2006,26(10):883-887. 被引量:10
  • 4金欣磊,马龙华,刘波,钱积新.基于动态交换策略的快速多目标粒子群优化算法研究[J].电路与系统学报,2007,12(2):78-83. 被引量:9
  • 5JOSHUA D K,DAVID W C.Approximating the nondominated front using the pareto archived evolution strategy[J].Evolutionary Computation,2000,8(2):149-172.
  • 6SHIN S Y,LEE I H,KIM D,et al.Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing[J].IEEE Transactions on Evolutionary Computation,2005,9(2):143-158.
  • 7DEB K,AGRAWAL S,PRATBA A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 8OSMAN M S,ABO-SINNA M A,MOUSA A A.IT-CEMOP:an iterative co-evolutionary algorithm for multiobjective optimization problem with nonlinear constraints[J].Applied Mathematics and Computation,2006,183:373-389.
  • 9HE S,WU Q H,SAUNDERS J R.A novel group search optimizer inspired by animal behavior[J].IEEE Transactions on Evolutionary Computation,2009,13(5):973-990.
  • 10Barnard C J,SIBLY R M.Producers and scroungers:a general model and its application to captive flocks of house sparrows[J].Animal Behavior,1981,29:543-550.

共引文献66

同被引文献29

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部