期刊文献+

复杂光照下的人脸姿态估计 被引量:4

Complex Illumination Face Pose Estimation
下载PDF
导出
摘要 人脸姿态估计是人机交互和人脸识别领域的一项关键研究内容,为了提高复杂光照下姿态估计的正确率,提出一种基于层次支持向量机(SVM)的估计方法.首先通过读取三维人脸模型,添加多种光照,并进行不同角度的投影变换生成训练样本图像;然后对训练样本图像进行大小归一化,伽马矫正,高斯差分滤波等预处理并提取方向梯度直方图(HOG)特征;最后采用层次支持向量机训练人脸姿态分类器,并利用该分类器对一幅具有复杂光照的输入图像估计人脸姿态.在Color FERET数据库上的实验表明,该方法能较好的估计复杂光照下的人脸姿态. Face pose estimation is a key research topic in the fields of human-computer interaction and face recognition. In order to improve the accuracy,this paper proposes a method of complex illumination face pose estimation based on hierarchical support vector machine( SVM). Firstly,the training samples are generated by reading the 3D face model,adding complex illumination and projection transformation in different angles. Secondly,this method uses gamma correction and difference of Gaussian filtering to preprocess pictures and extracts the histogram of oriented gradient( HOG) of training samples. Finally,training hierarchical support vector machines to estimate face pose. Experiment on Color FERET database shows that the method has a better face pose estimation in complicated illumination conditions.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第3期598-602,共5页 Journal of Chinese Computer Systems
关键词 三维人脸模型 人脸姿态估计 图像预处理 方向梯度直方图 支持向量机 3D face model face pose estimation image preprocessing Histogram of Oriented Gradient(HOG) Support Vector Machine(SVM)
  • 相关文献

参考文献5

二级参考文献39

  • 1梁国远,查红彬,刘宏.基于三维模型和仿射对应原理的人脸姿态估计方法[J].计算机学报,2005,28(5):792-800. 被引量:25
  • 2Yun Fu,Thomas Huang.Graph embedded analysis for head pose estimation[C].Proc.of the 7th International Conference on Automatic Face and Gesture Recognition.2006,3-8.
  • 3Roweis S,Saul L.Non-linear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 4Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(16):1373-1396.
  • 5Tenenbaum J B,Silva V D,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5550):2319-2323.
  • 6Specht D F.A generalized regression neural network[J].IEEE Transactions on Neural Networks,1991,2(6):568–576.
  • 7Hu Y X,Chen L B,Zhou Y,et al.Estimating face pose by facial asymmetry and geometry[C].IEEE Conf.on FG′04,2004,651-656.
  • 8Ba S O,dobez J M.A probabilistic framework for joint head tracking and pose estimation[C].IEEE Conf.on ICPR′04,2004,264-267.
  • 9Li S Z,Fu Q D,Gu L,et al.Kernel machine based learning for multi-view face detection and pose estimation[C].IEEE Conf.on ICCV′01,2001,2,674-679.
  • 10Mamoru Saito,Katsuhisa Kitaguchi.Appearance modeling for object pose recognition using canonical correlation analysis[C].SICE-ICASE International Joint Conference 2006,Bexco,Korea,2006,2818-2821.

共引文献48

同被引文献26

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部