期刊文献+

卷积神经网络优化算法研究

Research on optimization algorithm of convolution neural network
下载PDF
导出
摘要 为了解决卷积神经网络结构复杂,样本训练神经网络时间过长的问题,本文提出了采用分数阶理论优化卷积神经网络中的节点函数,使Sigmoid函数的收敛速度加快,在不影响卷积神经网络进行音频识别的正确率的前提下,减少了训练所需时间,达到提高整个神经网络的训练效率的目的。实验结果表明,在保证正确率的前提下该方法有效的减少了训练所花的时间,并可广泛应用于虚拟人运动控制系统中。 In order to solve the convolution neural network in speech recognition by samples to train the neural network takes a long time, this paper presents convolution neural network node function sigmoid function by using the theory of fractional order, accelerate the convergence speed of the sigmoid function, under the premise of the correct rate of speech recognition in does not affect the convolution neural network, so as to reduce the training time required to improve the training efficiency of the neural network. The experimental results show that the method can effectively reduce the time of the training when the guarantee is correct, and it can be widely used in virtual human motion control system.
出处 《齐齐哈尔大学学报(自然科学版)》 2016年第2期27-29,37,共4页 Journal of Qiqihar University(Natural Science Edition)
基金 黑龙江省教育厅科技研究项目资助(12531571)
关键词 卷积神经网络 分数阶理论 音频识别 SIGMOID函数 convolution neural networks fractional order speech recognition sigmoid function
  • 相关文献

参考文献12

二级参考文献73

  • 1刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 2Joseph P Campbell.Speaker recognition:A tutorial[J].Proceedings of the IEEE,1997,85(9):1437-1462.
  • 3Bimbot F,Bonastre J F.A tutorial on text-indepedent speaker verification[A].EURASIP Journal on Applied Signal Processing[C].2004.4:430-451.
  • 4Reynolds D A,Rose R C.Robust text-independent speaker identification using gaussian mixture speaker models[J].IEEE Trans.Speech Audio Processing,1995,3:72-83.
  • 5Reynolds D,Quatieri T,Dunn R.Speaker verification using adapted gaussian mixture models[J].Digital Signal Processing,2000,10(1-3):19-41.
  • 6Soonil Kwon,Shrikanth Narayanan.Robust speaker identification based on selective use of feature vectors[J].Pattern Recognition Letters,2007,28(1):85-89.
  • 7Campbell W M,Sturim D E,Reynolds D A.SVM based speaker verification using A GMM supervector kernel and NAP variability compensation[A].Proceedings of ICASSP[C].Toubuse,France,2006.97-100.
  • 8Yin Shouchun,Richard R,Kenny P.A joint factor analysis approach to progressive model adaptation in Text-Independent speaker verification[J].IEEE Trans.on Audio,Speech and Language Processing,2007,15(7):1999-2110.
  • 9Dehak N,Dehak R,Kenny P,et al.Comparison between factor analysis and GMM support vector machines for speaker verification[A].Proceedings of IEEE Odyssey 2008-The Speaker and Language Recognition Workshop (Odyssey 2008)[C].Stellenbosch,South Africa,January 21-25,2008.
  • 10Mak M W,Allen W G,Sexton G G.Speaker identification using multilayer perception and radial basis function networks[J].Neurocomputing,1994,6(1):99-117.

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部