期刊文献+

最小化类内距离和分类算法 被引量:12

Intraclass-Distance-Sum-Minimization Based Classification Algorithm
下载PDF
导出
摘要 支持向量机分类算法引入惩罚因子来调节过拟合和线性不可分时无解的问题,优点是可以通过调节参数取得最优解,但带来的问题是允许一部分样本错分。错分的样本在分类间隔之间失去了约束,导致两类交界处样本杂乱分布,并且增加了训练的负担。为了解决上述问题,该文根据大间隔分类思想,基于类内紧密类间松散的原则,提出一种新的分类算法,称之为最小化类内距离和(Intraclass-Distance-Sum-Minimization,IDSM)分类算法。该算法根据最小化类内距离和准则构造训练模型,通过解析法求解得到最佳的映射法则,进而利用该最佳映射法则对样本进行投影变换以达到类内间隔小类间间隔大的效果。相应地,为解决高维样本分类问题,进一步提出了该文算法的核化版本。在大量UCI数据集和Yale大学人脸数据库上的实验结果表明了该文算法的优越性。 Classification algorithm of Support Vector Machine(SVM) is introduced the penalty factor to adjust the overfit and nonlinear problem. The method is beneficial for seeking the optimal solution by allowing a part of samples error classified. But it also causes a problem that error classified samples distribute disorderedly and increase the burden of training. In order to solve the above problems, according to large margin classification thought, based on principles that the intraclass samples must be closer and the interclass samples must be looser, this research proposes a new classification algorithm called Intraclass-Distance-Sum-Minimization(IDSM) based classification algorithm. This algorithm constructs a training model by using principle of minimizing the sum of the intraclass distance and finds the optimal projection rule by analytical method. And then the optimal projection rule is used to samples' projection transformation to achieve the effect that intraclass intervals are small and the interclass intervals are large. Accordingly, this research offers a kernel version of the algorithm to solve high-dimensional classification problems. Experiment results on a large number of UCI datasets and the Yale face database indicate the superiority of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第3期532-540,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61170122 61272210)~~
关键词 支持向量机 惩罚因子 大间隔分类思想 类内距离和 映射法则 Support Vector Machine(SVM) Penalty factor Large margin classification thought Sum of intraclass distance Projection rule
  • 相关文献

参考文献31

  • 1QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
  • 2QUINLAN J R. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research, 1996, 4(1) 77-90.
  • 3PENG F, SCHUURMANS D, and WANG S. Augmenting naive Bayes classifiers with statistical language models[J]. Information Retrieval, 2004, 7(3/4): 317-345.
  • 4CHENG J and CREINER R. Comparing Bayesian network classifiers[C]. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, USA, 1999: 101-108.
  • 5COVER T and HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
  • 6BIJALWAN V, KUMAR V, KUMARI P, et al. KNN based machine learning approach for text and document mining[J]. International Journal of Database Theory and Application, 2014, 7(1): 61-70.
  • 7黄剑华,丁建睿,刘家锋,张英涛.基于局部加权的Citation-kNN算法[J].电子与信息学报,2013,35(3):627-632. 被引量:8
  • 8WELLING M. Fisher linear discriminant analysis[J]. Department of Computer Science, 2008, 16(94): 237-280.
  • 9FUIN N, PEDEMONTE S, ARRIDGE S, et al. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix[J]. IEEE Transactions on Medical Imaging, 2014, 33(3): 618-635.
  • 10DUFRENOIS F. A one-class kernel fisher criterion for outlier detection[J]. IEEE Transactions on Neural Networks ~: Learning Systems, 2014, 26(5): 982-994.

二级参考文献46

  • 1周志华.Multi-Instance Learning from Supervised View[J].Journal of Computer Science & Technology,2006,21(5):800-809. 被引量:12
  • 2Hall P,Park B U,and Samworth R J.Choice of neighbor order in nearest-neighbor classification[J].Annals of Statistics,2008,36(5):2135-2152.
  • 3Robert A J,Michael I J,Steven J N,et al..Adaptive mixtures of local experts[J].Neural Computation,1991,3(1):79-87.
  • 4Clodoaldo A M L,AndréL V C,and Fernando J V Z.Pattern classification with mixtures of weighted least-squares support vector machine experts[J].Neural Computing and Applications,2009,18(7):843-860.
  • 5Platt J C.Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.Smola A J,Bartlett P,Sch lkopf B,et al..Advances in Large Margin Classifiers[M].Cambridge:MIT Press,1999:61-74.
  • 6Stefan R.SVM classifier estimation from group probabilities[C].Proc.27th International Conference Machine Learning,Haifa,Israel,2010:911-918.
  • 7Kovalsky S Z,Cohen G,Hagege R,et al..Decoupled linear estimation of affine geometric deformations and nonlinear intensity transformations of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(5):940-946.
  • 8Banach S.Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales[J].Fundamenta Mathematicae,1922,3(1):133-181.
  • 9Kubat M and Matwin S.Addressing the curse of imbalanced training sets:one-sided selection[C].Proc.14th International Conference Machine Learning,Nashville,Morgan Kaufmann Publishers,1997:179-186.
  • 10Tao Jian-wen,Wang Shi-tong,Hu Wen-jun,et al..ρ-Margin kernel learning machine with magnetic field effect for both binary classification and novelty detection[J].International Journal of Software and Informatics,2010,4(3):305-324.

共引文献139

同被引文献94

  • 1陈刘瑜,李希建,毕娟,华攸金,魏泽云.基于AHP-TOPSIS的冲击型煤与瓦斯突出倾向性预测[J].中国安全科学学报,2020(4):47-52. 被引量:28
  • 2赵国富,周雪芹.基于聚类的空间数据挖掘系统的设计与实现[J].山东理工大学学报(自然科学版),2005,19(6):41-44. 被引量:5
  • 3王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 4林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007,35(2):163-167. 被引量:143
  • 5WU X,ZHUX,WUG,et al. Data mining with bigdata[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26 ( 1 ) : 97- 107.
  • 6GU R, YANG X, YAN J, et al. SHadoop: improving MapReduce performance by optimizing job execution mechanism in Hadoop elusters[J]. Journal of Parallel and Distributed Computing, 2014,74 (3) :2166-2179.
  • 7GU R, HU W, HUANG Y H. Rainhow:a distributed and hierarchi- cal RDF triple' store with dynamic scalahility[C]. Proceedings of the 2014 IEEE International Conference on Big Data. Washington, DC: IEEE Computer Society, 2014:561-566.
  • 8Mell P, Granee T. Draft NIST Working Definition of Cloud Computing [ R ]. NIST,2009.
  • 9Cloud Computing Drives New Networking Requirements [ R]. The Lippis Report,2009.
  • 10Cisco Nexus 1000v Virtual Ethernet Switch [ R]. Cisco Sys- tem, 2009.

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部