期刊文献+

基于描述长度的Context建模算法 被引量:2

Context Modeling Based on Description Length
下载PDF
导出
摘要 在基于Context建模的熵编码系统中,为了达到预期的压缩性能,需要通过Context量化来缓解由高阶Context模型所引入的"Context稀释"问题。为此,该文提出一种通过最小化描述长度来实现Context量化(Minimum Description Length Context Quantization,MDLCQ)的算法。该算法使用描述长度作为评价准则,通过动态规划算法来实现单条件的最优Context量化,然后通过循环迭代来实现多条件的Context量化。该算法不仅可以得到多值信源的优化Context量化器,而且可以自适应地确定各个条件的重要性从而确定模型的最佳阶数。实验结果表明:由MDLCQ算法所得到的Context量化器,可以明显改善熵编码系统的压缩性能。 In entropy coding systems based on the context modeling, the "context dilution" problem introduced by high-order context models needs to be alleviated by the context quantization to achieve the desired compression gain. Therefore, an algorithm is proposed to implement the Context Quantization by the Minimizing Description Length(MDLCQ) in this paper. With the description length as the evaluation criterion, the Context Quantization Of Single-Condition(CQOSC) is attained by the dynamic programming algorithm. Then the context quantizer of multi-conditions can be designed by the iterated application of CQOSC. This algorithm can not only design the optimized context quantizer for multi-valued sources, but also determine adaptively the importance of every condition so as to design the best order of the model. The experimental results show that the context quantizer designed by the MDLCQ algorithm can apparently improve the compression performance of the entropy coding system.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第3期661-667,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61062005)~~
关键词 条件熵编码 Context量化 描述长度 算术编码 Conditional entropy coding Context quantization Description length Arithmetic coding
  • 相关文献

参考文献14

  • 1周映虹,马争鸣.基于上下文建模的分类排序小波图像编码算法[J].电子与信息学报,2006,28(12):2405-2408. 被引量:2
  • 2LAKHDHAR K and LEFEDVRE R. Context-based adaptive arithmetic encoding of EAVQ indices[J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(5): 1473-1481.
  • 3CHUAH $, DUMITRESCU S, and WU Xiaolin. /2 optimized predictive image coding with [o~ bound[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5271-5281.
  • 4STRUTZ T. Entropy based merging of context models for efficient arithmetic coding[C]. IEEE International Conference on Acoustic, Speech and Signal Processing, Florence, Italy, 2014: 1991-1995.
  • 5KIM S and CHO N I. Hierarchical prediction and context adaptive coding for lossless color image compression[J].IEEE Transactions on Image Processing, 2014, 23(1): 445-449.
  • 6XU Mantao, WU Xiaolin, and Pasi F. Context quantization by kernel fisher discriminant[J]. IEEE Transactions on Image Processing, 2006, 15(1): 169-177.
  • 7WANG Wei, PENG Shuyan, and CHEN Jianhua. Context quantization based on the ant K-Means clustering algorithmiC]. International Conference on Systems and Informatics, Yantai, 2012: 1573-1576.
  • 8CHEN Min, LIU Chen, and WANG Fuyan. Context quantization under the minimum increment of the adaptive code length[C]. International Conference on Information Technology and Applications, Chengdu, 2013: 9-12.
  • 9WEINBERGER M J, RISSANEN J J, and ARPS R B. Applications of universal context modeling to lossless compression of gray-scale images[J]. IEEE Transactions on Image Processing, 1996, 5(4): 575-586.
  • 10WU Xiaolin, CHOU P A, and XUE Xiaohui. Minimum conditional entropy context quantization[C]. IEEE International Symposium on Information Theory, Sorrento, Italy, 2000: 43.

二级参考文献10

  • 1ISO/IEC 15444-1:Information technology-JPEG 2000 image coding system-Part1:Core coding system,2000.
  • 2Taubman D.High performance scalable image compression with EBCOT.IEEE Trans.on Image Processing,2000,9(7):1158-1170.
  • 3Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients.IEEE Trans.on Signal Processing,1993,41(12):3445-3462.
  • 4Said A,Pearlman W A.A new,fast,and efficient image codec based on set partitioning in hierarchical trees.IEEE Trans.on Circuits and Systems for Video Technology,1996,6(3):243-250.
  • 5Zhen Liu,Karam L J.Mutual information-based analysis of JPEG2000 contexts.IEEE Trans.on Image Processing,2005,14(4):411-422.
  • 6Li J,Lei S.Rate-distortion optimized embedding.Picture Coding Symposium.Berlin,Germany,1997:201-206.
  • 7Peng Kewu,Kieffer J C.Embedded image compression based on wavelet pixel classification and sorting.IEEE Trans.on Image Processing,2004,13(8):1011-1017.
  • 8Wu Xiaolin.Context quantization with Fisher discriminant for adaptive embedded wavelet image coding.Data Compression Conference,Snowbird,USA,1999:102-111.
  • 9Chen Jianhua.Context modeling based on context quantization with application in wavelet image coding.IEEE Trans.on Image Processing,2004,13(1):26-32.
  • 10Adams M D.Official reference implementation of the JPEG-2000 Part-1 codec.[Online]http://www.ece.uvic.ca/~mdadams/jasper/.2005.Available.

共引文献1

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部