期刊文献+

无信号内干扰的相关延迟键控混沌通信方案 被引量:6

Correlation Delay Shift Keying Chaotic Communication Scheme with No Intrasignal Interference
下载PDF
导出
摘要 该文提出一种名为无信号内干扰相关延迟键控(Correlation-Delay-Shift-Keying with No Intrasignal Interference,CDSK-NII)的新型混沌通信方案。采用重复混沌序列为参考信号,同时利用零和序列确保参考信号与信息信号严格正交,CDSK-NII能够在解调过程中消除信号内干扰。在高斯白噪声信道和Rayleigh衰落信道中分析CDSK-NII的比特误码率。实验结果表明:由于无信号内干扰,CDSK-NII的比特误码率低于CDSK和通用相关延迟键控(GCDSK);随着复帧长度的增加,CDSK-NII的性能将进一步提升,比特误码率低于参考自适应相关延迟键控(RA-CDSK)。 This paper proposes a novel chaotic communication scheme named Correlation-Delay-Shift-Keying with No Intrasignal Interference(CDSK-NII). By utilizing the repeated chaotic sequence as the reference signal and taking advantage of the zero-sum sequence to ensure the reference signal strictly orthogonal to the informationbearing signal, CDSK-NII can eliminate the intrasignal interference during the demodulation. The Bit Error Ratio(BER) of CDSK-NII is analyzed under AWGN channel and Rayleigh fading channel. Experiment results show that, due to no intrasignal interference, the BER of CDSK-NII is lower than that of CDSK and Generalized CDSK(GCDSK); with the length of multiframe increasing, the performance of CDSK-NII becomes better, and its BER is lower than that of Reference-Adaptive CDSK(RA-CDSK).
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第3期681-687,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61373136 61401226) 江苏省研究生创新计划(KYLX_0814)~~
关键词 混沌通信 相关延迟键控 信号内干扰 比特误码率 Chaotic communication Correlation-Delay-Shift-Keying(CDSK) Intrasignal interference Bit Error Ratio(BER)
  • 相关文献

参考文献16

  • 1席峰,陈胜垚,刘中.混沌模拟信息转换——基于多射法的稀疏信号重构[J].电子与信息学报,2013,35(3):608-613. 被引量:3
  • 2陈胜垚,席峰,刘中.多通道混沌调制模拟-信息转换[J].电子与信息学报,2014,36(1):152-157. 被引量:4
  • 3黄琼丹,李勇,卢光跃.脉间Costas跳频脉内多载波混沌相位编码雷达信号设计与分析[J].电子与信息学报,2015,37(6):1483-1489. 被引量:15
  • 4DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuit[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1993, 40(10): 634-642. doi: 10.1109/82.246164.
  • 5KOLUMB.~N G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: a robust coding for chaos communications[C]. Proceedings of the 4th International Workshop on Nonlinear Dynamics of Electronics Systems, Seville, 1996: 87-92.
  • 6WANG Lin, MIN Xin, and CHEN Guanrong. Performance of FM-DCSK UWB system based on chaotic pulse cluster signals[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2011, 58(9): 2259-2268. doi: 10.1109/TCSI. 2011.2112592.
  • 7YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: a simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(12): 967-971. doi: 10.1109/TCSII.2014.2356914.
  • 8SUSHCHIK M, TSIMRING L S, and Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(12): 1684-1691. doi: 10.1109/81.899920.
  • 9TAM W M, LAU F C M, and TSE C K. Generalized correlation-delay-shift -keying scheme for noncoherent chaos-based communication systems[J]. IEEE Transactionson Circuits and Systems I: Regular Papers, 2006, 53(3): 712-721. doi: 10.1109/TCSI.2005.858323.
  • 10DUAN Junyi, JIANG Guoping, and YANG Hua. Reference-adaptive CDSK: an enhanced version of correlation delay shift keying[J]. IEEE Transactions on Circuits and System-II: Express Briefs, 2015, 62(1): 90-94. doi: 10.1109/ TCSII.2014.2362691.

二级参考文献38

  • 1Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 4Kirolos S, Laska J N, Wakin M B, et al.. Analog- to-Information conversion via random demodulation[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop, Dallas, Oct. 2006: 71-74.
  • 5Mishali M and Eldar Y C. Wideband spectrum sensing at sub-Nyquist rates[J]. IEEE Signal Processing Magazine, 2011, 28(4): 102-135.
  • 6Xi F, Chen S Y, and Liu Z. Quadrature compressive sampling for radar echo signals[C]. Proceedings of 2011 International Conference on Wireless Communications and Signal Processing (WCSP), China, Nanjing, 2011: 1-5.
  • 7Tropp J A, Wakin M B, Duarte M F, et al.. Random filters for compressive sampling and reconstruction[C]. International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, May 2006: III-872-III-875.
  • 8Laska J N, Kirolos S, Massoud Y, et al.. Random sampling for analog-to-information conversion of wideband signals[C]. Proceedings of the IEEE Dallas Circuits and Systems Workshop, Richardson, TX, Oct. 2006: 119-122.
  • 9Becker S R. Practical compressed sensing: modern data acquisition and signal processing[D]. [Ph.D. dissertation], California Institute of Technology, 2011.
  • 10Liu Z, Chen S Y, and Xi F. A compressed sensing framework of frequency-sparse signals through chaotic systems[J]. International Journal of Bifurcation and Chaos, 2012, 22(6): 1250151.1-1250151.9.

共引文献18

同被引文献16

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部