期刊文献+

面向智能电网架空线的传感器故障容忍机制 被引量:5

Fault Tolerance Mechanism for Sensors Monitoring Overhead Transmission Line in Smart Grid
下载PDF
导出
摘要 在配用电网络全网的监控过程中,杆塔等设施的状态监测与故障容忍成为电力系统亟待解决的问题。现有的监控系统由于网络线性拓扑结构等限制,故障发生时无法及时维护,影响到电力生产业务,易造成电力重大事故。该文面向利用传感器监控电网架空线的背景,提出一个针对传感器部署的故障容忍机制。首先,依据N-x原则等,最小化冗余备份节点和无线模块的数量,达到成本最小化的目的。其次,综合考虑时延约束、N-x原则的数量约束等构建数学优化模型。基于该模型,利用聚类合并思想,构建了一个面向智能电网架空线的传感器故障容忍机制。最后,仿真实验证明,以此机制部署的传感器监测网络能够在成本最小化的基础上,有效地容忍故障。 In the process of monitoring and controlling power distribution network, condition monitoring and fault tolerance of towers and other facilities become an urgent problem in power system. The existing monitoring system can not maintain transmission of distributed power timely when fault occurs because of the limitations such as linear topology. Therefore, it may result in serious power system accidents, influencing production business of electric power. Based on the background of using sensors to monitor overhead transmission line, a fault tolerance mechanism for sensors deployment is proposed. First, according to N-x principle, the number of backup nodes and cellular-enabled modules is minimized to achieve the goal of cost minimization. Second, the number constraint of N-x principle and delay constraint is integrated into establishing a mathematical optimization model. Based on this model and by using clustering algorithm, a fault tolerance mechanism is built for sensors monitoring overhead transmission line in smart grid. Finally, the simulation experiment shows that sensor monitoring network deployed with this mechanism can tolerate the faults on the basis of minimized cost effectively.
机构地区 北京邮电大学
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第3期700-706,共7页 Journal of Electronics & Information Technology
基金 国家863计划项目(2012AA050801) 国家自然科学基金(61121061)~~
关键词 智能电网 故障容忍 无线传感器网 遗传算法 Smart grid Fault tolerance Wireless Sensor Network(WSN) Genetic algorithms
  • 相关文献

参考文献4

二级参考文献51

  • 1王良民,马建峰,王超.无线传感器网络拓扑的容错度与容侵度[J].电子学报,2006,34(8):1446-1451. 被引量:22
  • 2Pister K, Hohlt B, Jeong J, et al.. Ivy-A sensor network infrastructure. 2003. http://www-bsac.eecs.berkeley.ed u/projects/ivy.
  • 3Jian N, Chandler S A G. Connectivity properties of radio telephone network. [A]Mobile and Personal Communications.1993. Seventh IEE European Conference [C], 13-25 Dec 1993: 136-141.
  • 4Heo N, Varshney P K. A distributed self spreading algorithm for mobile wireless sensor networks[A]. IEEE Conference on Wireless Communications and Networking, March 16-20, 2003,vo13. 1597-1602.
  • 5Huang C-F, Tseng Y-C. The coverage problem in a wireless sensor network.[A] WSNA03 [C], September 19, 2003, San Diego, CA. 2003: 115-121.
  • 6Gage D W. Command control for many-robot systems [A].AUVS-92, the 19th Annual AUVS Technical Symposium,Huntsville AL[C], June 1992: 22-24.
  • 7O'Rourke J. Art gallery theorem and algorithms[M]. New York:Oxford University Press, 1987.
  • 8Meguerdichian S, Koushanfar F, Potkonjak M, et al.. Coverage problems in wireless Ad-hoc sensor networks [J]. INFOCOM'01,2001, (3): 1380-1387.
  • 9Chakrabarty K, lyengar S. S, Qi H, et al.. Grid coverage for surveillance and target location in distributed sensor networks [J].IEEE Trans. on Computers, 2002, 51 ( 12): 1448-1453.
  • 10Bulusu N, Heidemann J, Estrin D. Adaptive beacon placement[A].in Proceedings of the 21th International Conference on Distributed Computing Systems[C]. Phoenix, AZ, Apr. 2001:489-498.

共引文献69

同被引文献31

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部