期刊文献+

温度对空间用氢镍电池电化学性能的影响

Temperature Effects on Properties of Aerospace Nickel Hydrogen Cells
下载PDF
导出
摘要 以60 Ah氢镍电池为研究对象,研究了温度对电池电性能的影响.结果表明,电池的放电容量、过充电率随着温度均呈先升后降趋势,最高放电容量可达63.68 Ah(-5℃),电池的适合涓流值及3天自放电率随着温度的升高呈增加趋势,电池的放电容量、过充电率、适合涓流值和自放电率与环境温度之间有近似的代数公式变化关系.-10℃、80%放电深度(DOD)条件下循环3000次后,电池电性能无明显衰降;25 ℃下循环550次,放电电压跌至0.8 V,电池失效.结合相关参考文献结果及EIS试验分析可知,25 ℃下电池循环性能迅速失效主要是由于高温下镍电极更易析氧和发生极板腐蚀,以及高温下镍极板更易粉化所致. This has been done using the 60 Ah nickel-hydrogen cell to investigate the temperature effects on properties of aerospace nickel hydrogen cells. The charge-discharge, trickle charge, overcharge, self-discharge and cycle life tests were carried out at different temperatures. The results show that the discharge capacity and overcharge rate were increased first, and then de- creased with the raising temperature. On the other hand, the trickle charge value and the 3 days self-discharge rate were raised with increasing temperature. When the temperature was -5 ℃, the discharge capacity of cell reached the maximum discharge capacity of 63.68 Ah. Based on the test results, the approximate functions among the discharge capacity, trickle charge rate, overcharge rate, self-discharge rate and temperature can be described. The battery lifetime results at 80% DOD and -15℃ indicate no apparent bat- tery deterioration even after 3000 cycles. When the lifetime operating at 80% DOD and 25 ℃, the cut-off voltage for end discharge of the cell dropped to 0.8 V and the battery failed. Based on the related references and EIS results, it was concluded that the temperature increase resulted in oxygen electrode potential drop, and the early start of oxygen evolution at charge and nickel plate pulverized, which markedly speeds up the cell performance degradation at life cycling.
出处 《电化学》 CAS CSCD 北大核心 2016年第1期49-56,共8页 Journal of Electrochemistry
关键词 空间氢镍电池 温度 电性能 aerospace nickel hydrogen cell temperature electrochemical property
  • 相关文献

参考文献16

  • 1Thaller L H, Zimmerman A H. Overview of the design, de- velopment, and application of nickel-hydrogen batteries [M]. California, NASA Center for AeroSpace Information, 2003:12-13.
  • 2Goddard Space Flight Center. Ni-H2 spacecraft battery hand- ing and storage practice. NASA preferred reliability prac- tices[M]. Practice No. PD-ED-1109: 1-5.
  • 3Zimmerman A H. Low-temperature failure mode for nick-el-hydrogen cells[M]. National Technical Information Ser- vice (NTIS). Aerospace Report No. TR-2005(8555)-5,1998: 1-17.
  • 4Barnard R, Randell C F, Tye F L. Studies concerning charged nickel hydroxide electrodes I. Measurement of re- versible potentials[J]. Journal of Applied Electrochemistry, 1980, 10(1): 109-125.
  • 5Corringan D A, Kinigh S L. Electrochemical and spectro- scopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction[J]. Journal of the Electrochemical Society, 1989, 136(3): 613-619.
  • 6Faure C, Delmas C, Fouassier M. Characterization ofa tur- bostratic c-nickel hydroxide quantitatively obtained fi:om an NiSO4 solution[J]. Journal of Power Sources, 1991, 35(3): 279-290.
  • 7Sac-Epee N, Palacin M R, Beaudoi B, et al. On the origin of the second low-voltage plateau in secondary alkaline batteries with nickel hydroxide positive electrodes [J]. Journal of the Electrochemical Society, 1997, 144 (11): 3896-3907.
  • 8Thaller L H, Zimmeran A H, To G A. Understanding the impact of electrolyte and cobalt additive concentrations on the performance of nickel-hydrogen cells[M]. The 2002 NASA Aerospace battery workshop: 337-359.
  • 9Quinzio M V, Zimmeran A H. Dynamic calorimetry for thermal characterization of battery cells[M]. Battery Con- ference on Applications and Advances, 2002: 279-284.
  • 10Vaidyanathan H, Rao G M. Electrode properties and heat generation rate in Ni-Cd, Ni-H2, and Ni-MH cells[M]. IECEC, 1997, 1: 83-86.

二级参考文献11

  • 1Lawrence H T,Albert H Z.Overview of the design,development,and application of nickel-hydrogen batteries[R].NASA/TP-2003-211905.
  • 2Eric W G,Douglas R C,Charles W B.Thermal design & verification of the EOS-AM1 nickel hydrogen batteries[C]//Proceedings of the Intersociety Energy Conversion Engineering Conference.Hawaii:American Institute of Chemical Engineers,1997:207-212.
  • 3Junbom K,White R E.Comparison of heat-fin materials and design of a common-pressure-vessel nickel-hydrogen battery[J].Journal of Electrochemical Society,1992,139 (12):3492-3499.
  • 4Junbom K,Nguyen T V,White R E.Thermal characteristics of a nickel-hydrogen battery[J].Journal of Electrochemical Society,1994,141(2):333-337.
  • 5Schrage D S.Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions[C]//Proceedings of the 26th Intersociety Energy Conversion Engineering Conference.Boston:American nuclear society,1991:335-340.
  • 6Zimmerman A H.Life modeling for nickel hydrogenbatteries in geosynchronous satellite operation. AIAA 2005 -5623 . 2005
  • 7Ommering G V,Koehler C W,Briggs D C.Nickel-hy-drogen batteries for INTELSAT V[].ProcthIntersociety Energy Conversion Engineering Confer-ence.1980
  • 8Carlo T,Romulo P.Performance improvement of AS-TRA 1A Ni-H2 batteries using optimized battery char-ging schemes and reconditioning[].AIAA---CP.1994
  • 9Zimmerman A H,,Quinzio M V.Modle for predictingthe effects of long-termstorage and cycling onthe life ofNi H2 cell[].Procof the NASA Battery Work-shop.2003
  • 10DUNLOP J D,GOPALAKRISHNA M R,YI T Y.NASA handbook for nickel-hydrogen batteries[]..1993

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部